Tonerzeugung bei der Singstimme
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Tonerzeugung bei der Singstimme
Nahezu jedes Lebewesen ist in der Lage Laute von sich zu geben, die bei dir als Schreie, Gelächter, Sprache oder gar Gesang ankommen können. Um diese Geräusche zu erzeugen, setzt unser Körper die Lunge und die Stimmbänder geschickt ein. Wie es unser Körper schafft diese gezielte Laute zu erzeugen, die Laute in Lautstärke und Tonlage zu verändern und auch die Grenzen unseres Stimminstruments zu zeigen; lernst du in diesem Video.
Transkript Tonerzeugung bei der Singstimme
Themen dieses Filmes sind die Singstimme und die Tonerzeugung beim Singen. Die Stimme ist das wichtigste Kommunikationsmittel des Menschen. Einfache Laute wie Schreien, Lachen oder Weinen können schon Babys erzeugen. Doch erst ab dem zweiten Lebensjahr fangen Kinder an zu sprechen, also, mit ihrer Stimme exakte Laute zu bilden. Können diese Laute später auch in eine rhythmische Struktur gebracht werden und weisen sie große Tonhöhenunterschiede auf, nennt man das Gesang. Wegen dieser Eigenschaften kann man die Singstimme auch als Instrument bezeichnen. Und mit ihr können die Menschen besonders gut Emotionen wie Freude, Angst oder Hoffnung ausdrücken. Die wichtigsten Organe für die Tonerzeugung beim Menschen sind die Lunge, die Luftröhre, der Kehlkopf mit den Stimmlippen und Mund-, Nasen und Rachenraum, die zusammen als Vokaltrakt bezeichnet werden. Um einen Ton zu singen muss zuerst einmal tief eingeatmet werden. Die Lunge wird mit Luft gefüllt. Der eigentliche Ton hat seinen Ursprung im nachfolgenden Ausatemvorgang. Dabei entspannen sich das Zwerchfell und die Zwischenrippenmuskulatur. Die Lunge wird dadurch zusammengedrückt wie ein Blasebalg und Luft strömt durch die Luftröhre zurück zum Kehlkopf. Hier trifft sie auf die beiden im angespannten Zustand geschlossenen Stimmlippen. Die Luft wird davor aufgestaut und es entsteht ein Überdruck. Ab einem bestimmten Druckniveau öffnen sich die Stimmlippen und lassen Luft entweichen. Danach schwingen sie wieder in ihre geschlossene Position zurück. Die Stimmlippen bleiben nun so lange geschlossen, bis sich erneut ein genügend großer Druck aufgebaut hat. Dann öffnen sie sich wieder und ein neuer Luftstoß kann entweichen. Die Stimmlippen beginnen zu schwingen. Diese Schwingungen der Stimmlippen kann man sogar filmen, wenn man mit einer kleinen Kamera von oben in den Kehlkopf schaut. Aber nur in der Animation wird deutlich, was physikalisch passiert. Die Stimmlippen wandeln nämlich einen kontinuierlichen Luftstrom in viele kleine Luftstöße um. Jeder dieser Luftstöße löst eine kleine Druckwelle aus, die sich über die Luftmoleküle in Rachen-, Nasen und Mundraum ausbreitet. Über den geöffneten Mund und die Nase werden die Druckwellen schließlich auf die Moleküle der Umgebungsluft übertragen. Als Schallwellen breiten sie sich so im Raum aus und treffen auf die Ohren der Zuhörer, wo sie vom Trommelfell aufgenommen werden. Jetzt können wir einen Ton hören, oder eben auch die aufeinandergereihten Töne, die den Gesang ausmachen. Ob wir einen Ton als hoch oder tief wahrnehmen, hängt von seiner Frequenz ab, also der Anzahl der Schallwellen pro Sekunde. Sind die Stimmlippen nur wenig gespannt, schwingen sie langsam und erzeugen nur wenige Druckimpulse in der Sekunde. Der zu hörende Ton ist tief. Hohe Töne entstehen umgekehrt durch eine hohe Stimmlippenspannung, durch die pro Sekunde deutlich mehr Druckwellen erzeugt werden. Beim Singen verändert man also, meistens ohne, dass man sich dessen bewusst ist, die Spannung der Stimmlippen und erzeugt so die unterschiedlich hohen Töne. Doch wie entstehen die verschiedenen Laute, zum Beispiel Vokale wie I und U? Mithilfe der Stimmbänder werden Töne mit einer bestimmten Tonhöhe erzeugt, bei einer Schwingfrequenz von etwa 200 Hertz, also 200 Schwingungen pro Sekunde, zum Beispiel das kleine G. Allerdings bestehen natürliche Töne nicht nur aus dem Grundton, sondern, dieser wird von unzähligen weiteren Obertönen überlagert, deren Frequenzen ganzzahlige Vielfache des Grundtons sind, beim kleinen G also 400, 600, 800 Hertz und so weiter. Der Mensch kann nun beim Sprechen oder beim Singen sein Vokaltrakt verformen, zum Beispiel mit der Zunge. Dadurch werden verschiedene Obertöne des ursprünglichen im Kehlkopf erzeugten Tons verstärkt oder gedämpft. So wird zum Erzeugen des Vokals I die Zunge im vorderen Mundbereich gewölbt, wodurch die Frequenzbereiche um 400 und 2000 Hertz verstärkt werden. Beim U wird die Zunge im hinteren Bereich gewölbt. Und dadurch werden die Frequenzen um 500 und 1.000 Hertz überproportional verstärkt. Durch die Formung des Vokaltraktes lassen sich also die Obertonspektren der im Kehlkopf erzeugten Schallwellen verändern. Deswegen hört sich ein U anders an als ein I, das auf derselben Tonhöhe gesungen wird. Die Erzeugung von verschiedenen Lauten bei gleicher Tonhöhe ist vergleichbar mit den unterschiedlichen Klangfarben verschiedener Instrumente. Denn der unterschiedliche Klang der Vokale I und U ist ebenso eine Folge der verschiedenen Obertonspektren, wie beispielsweise die unterschiedlichen Klangfarben von Geige und Klavier. Dank dieser Eigenart ist die menschliche Singstimme das wohl vielseitigste aller Musikinstrumente. Geübte Sänger können die faszinierendsten Klangwellen entstehen lassen. Dass man alleine mit der Singstimme aber auch Glas zum Zerplatzen bringen kann, ist ein Mythos, denn dazu ist die menschliche Stimme einfach nicht laut genug.
Tonerzeugung bei der Singstimme Übung
-
Vervollständige die Sätze.
TippsEine Stimmgabel mit einem tiefen Ton schwingt langsamer als eine Stimmgabe mit einem hohen Ton.
Ein stark gespanntes Paukenfell hat einen höheren Ton als ein schlaffes Paukenfell.
Der Kammerton $a$ mit der Frequenz $432~\text{Hz}$ hat die Obertöne $864~\text{Hz}$, $1296~\text{Hz}$, $1728~\text{Hz}$ usw.
LösungWir können die Halbsätze wie folgt vervollständigen:
- „Wenig gespannte Stimmlippen ... erzeugen einen tiefen Ton.“ Du kannst dir das ähnlich wie bei einer Pauke vorstellen: Je stärker das Paukenfell gespannt ist, desto höher ist der Ton.
- „Stark gespannte Stimmlippen ... erzeugen viele Luftstöße pro Sekunde.“ Je mehr Luftstöße pro Sekunde erzeugt werden, desto höher ist der Ton. Auch bei einer schwingenden Saite ist der Ton umso höher, je stärker die Saite gespannt ist.
- „Die Frequenzen der Obertöne ... sind ganzzahlige Vielfache der Frequenzen des Grundtons.“ Diese Obertöne spielen bei der Tonerzeugung in Blasinstrumenten eine große Rolle. Sie sind bei jedem Ton eines Instruments oder einer Singstimme vorhanden. Die unterschiedliche Verstärkung oder Dämpfung der Obertöne bestimmt den Klang der Instrumente oder der einzelnen Vokale einer Singstimme.
- „Durch Verformung des Vokaltrakts ... werden verschiedene Obertöne gestärkt oder gedämpft.“ Diese Verstärkung und Dämpfung dient u. a. dazu, verschiedene Vokale zu bilden, und bestimmt die Klangfarbe der Singstimme.
- „Die Schallwellen eines tiefen Tons ... haben weniger Schwingungen pro Sekunde als die eines hohen Tons.“ Je höher der Ton ist, desto schneller sind die Schwingungen.
-
Beschreibe den Vorgang der Tonerzeugung beim Singen.
TippsBeim Einatmen strömt Luft in die Lunge.
Ein Ton kommt erst zustande, wenn die Luft in Schwingungen gerät.
Beim Ausatmen sind die Stimmlippen zunächst geschlossen.
LösungEin klingender Ton ist eine als Schallwelle übertragene Schwingung der Luftmoleküle. Bei der Singstimme wird diese Schwingung der Luftmoleküle im Rachenraum erzeugt. Dazu ist die Abfolge verschiedener Vorgänge notwendig: Durch tiefes Einatmen wird die Lunge mit Luft gefüllt. Beim Ausatmen strömt die Luft durch die Lunge zurück zum Kehlkopf. Die zurückströmende Luft trifft auf die beiden im angespannten Zustand geschlossenen Stimmlippen. Vor den Stimmlippen staut sich die Luft, sodass sich ein gewisser Druck aufbaut. Dann öffnen sich die Stimmlippen und lassen die Luft entweichen. Anschließend schwingen die Stimmlippen in ihre geschlossene Position zurück. Bis sich erneut ein hinreichend großer Druck aufgebaut hat, bleiben die Stimmlippen geschlossen. Durch dieses Öffnen und Schließen kommen die Stimmlippen ins Schwingen und erzeugen so den Ton als rhythmische Luftdruckänderung. Durch die Schwingungen der Stimmlippen werden die Luftmoleküle zu Schwingungen angeregt, die sich wiederum als Schallwelle im Raum ausbreiten. Im Ohr wird die Schallwelle als Ton wahrgenommen.
-
Bestimme die Frequenzen der Grundtöne.
TippsDie Frequenzen der Obertöne des Kammertons $a=432~\text{Hz}$ sind alle ganzzahligen Vielfachen der Frequenz $432~\text{Hz}$.
$1.320~\text{Hz}$ ist kein ganzzahliges Vielfaches von $560~\text{Hz}$, denn $1.320 : 560 \approx 2,357$.
Die Obertöne von $200~\text{Hz}$ haben die Frequenzen $400~\text{Hz}$, $600~\text{Hz}$ usw., aber nicht $300~\text{Hz}$, $500~\text{Hz}$ usw.
LösungFür die Klangfarbe eines gesungenen oder auf einem Instrument gespielten Tones sind die Obertöne entscheidend. Die Obertöne sind immer dieselben, denn sie hängen nur von den Grundtönen ab. Ihre Frequenzen sind ganzzahlige Vielfache der Frequenzen der Grundtöne. Nur weil die Schwingungen ganzzahlige Vielfache der Schwingung des Grundtons sind, werden sie zusammen mit der Schwingung des Grundtons angeregt. Für die verschiedenen Klangfarben sind nicht die Tonhöhen der Obertöne verantwortlich, sondern die unterschiedliche Verstärkung oder Dämpfung einzelner Obertöne.
Du findest die Zuordnung der Oberton-Frequenzen zu den Grundton-Frequenzen, indem du nach Vielfachen der Grundton-Frequenzen suchst. Du kannst z. B. die Vielfachen von $220~\text{Hz}$ ausrechnen und findest $2 \cdot 220~\text{Hz} = 440~\text{Hz}$, $3 \cdot 220~\text{Hz}= 660~\text{Hz}$. Diese Frequenzen gehören also zu Obertönen.
Zur Probe kannst du auch die Frequenz eines Obertons durch die Frequenz eines Grundtons dividieren: $1.120:220 = 5,\overline{09}$. Dies ist keine ganze Zahl, daher ist $1.120~\text{Hz}$ nicht die Frequenz eines Obertons von $220~\text{Hz}$.
Hier ist die passende Zuordnung:
$400~\text{Hz}$:
- $800~\text{Hz} = 2 \cdot 400~\text{Hz}$
- $1.200~\text{Hz} = 3 \cdot 400~\text{Hz}$
- $1.600~\text{Hz} = 4 \cdot 400~\text{Hz}$
- $300~\text{Hz} = 2 \cdot 150~\text{Hz}$
- $750~\text{Hz} = 5 \cdot 150~\text{Hz}$
- $1.350~\text{Hz} = 9 \cdot 150~\text{Hz}$
- $440~\text{Hz} = 2 \cdot 440~\text{Hz}$
- $1.320~\text{Hz} = 6 \cdot 220~\text{Hz}$
- $1.760~\text{Hz} = 8 \cdot 220~\text{Hz}$
- $1.120~\text{Hz} = 2 \cdot 560~\text{Hz}$
- $1.680~\text{Hz} = 3 \cdot 560~\text{Hz}$
- $3.920~\text{Hz} = 7 \cdot 560~\text{Hz}$
-
Bestimme die Zusammenhänge von Tonhöhe und Tonfarbe mit Frequenzen.
TippsIn einem Blasinstrument werden die Luftmoleküle durch Druck in Schwingungen versetzt.
Längere Saiten erzeugen weniger Schwingungen pro Sekunde als kürzere Saiten.
LösungFolgende Sätze sind richtig:
- „Die Tonerzeugung bei der Singstimme ... ähnelt der in einem Blasinstrument.“ In beiden Fällen werden die Luftmoleküle im Innern des Instruments in Schwingungen versetzt. Manche Blasinstrumente (z. B. Klarinetten oder Oboen) verwenden dazu schwingende Blättchen, in anderen wird wie bei der Singstimme durch die schwingenden Stimmlippen direkt der Luftstrom in Schwingungen versetzt. Das Zwerchfell ist zwar für die Atmung von Bedeutung, hat aber keinen unmittelbaren Einfluss auf den Ton und die Klangfarbe der Singstimme.
- „Die Tonhöhe eines Streichinstruments ... hängt von der Länge der Saiten ab.“ Denn längere Saiten erzeugen tiefere Töne als kürzere Saiten. Die Erzeugung verschiedener Töne bei einer Geige oder Gitarre geschieht durch Verkürzung der schwingenden Saite mithilfe der Griffe auf dem Griffbrett.
- „Die Klangfarbe eines Instruments ... hängt von der Verstärkung und Dämpfung der Obertöne ab.“ Die Höhen der Obertöne sind bei allen Instrumenten gleich. Erst die unterschiediche starke Dämpfung und Verstärkung führt zur Verschiedenheit der Klangfarben.
- „Eine reine Schwingung ohne Obertöne ... ist keinem Instrument zuzuordnen.“ Der unverwechselbare Klang eines Instruments kommt durch die charakteristische Verstärkung oder Dämpfung der Obertöne zustande. Einen reinen Grundton ohne Obertöne kann man nur durch spezielle technische Geräte wie Sinus-Generatoren erzeugen – und so klingt er dann auch.
- „Eine Schwingung der Luftmoleküle ... breitet sich als Schallwellen im Raum aus.“ Diese Schwingungen werden in Musikinstrumenten oder bei der menschlichen Stimme angeregt, z. B. durch Schwingungen von Saiten, Blättchen oder Stimmlippen.
-
Zeige die Organe der Tonerzeugung.
TippsEin Ton entsteht durch die Schwingung der Stimmlippen.
Beim Einatmen strömt Luft in die Lunge.
Den oberen Teil des Halses nennt man auch Rachen.
LösungUm einen Ton singen zu können, sind Bewegungen ganz verschiedener Organe erforderlich: Zuerst strömt beim Einatmen Luft durch die Luftröhre in die Lunge ein und beim Ausatmen wieder aus. Den eigentlichen Ton erzeugt eine Schwingung der Stimmlippen im Rachenraum, also im oberen Teil des Halses. Wie der Ton am Ende klingt, hängt auch von den Resonanzräumen in Mund und Nase ab, also vom Mundraum und Nasenraum. Als Vokaltrakt bezeichnet man den Mundraum, Nasenraum und Rachenraum zusammen.
-
Prüfe die Aussagen.
TippsDie Lautstärke eines Tones hängt von dem Schwingungsausschlag ab. Das kannst du gut an der Membran eines Lautsprechers beobachten.
LösungFolgende Aussagen sind richtig:
- „Je länger eine schwingende Saite ist, desto tiefer ist der Ton.“ Die Erzeugung verschiedener Tonhöhen bei der Gitarre beruht auf der variablen Verkürzung der Saite durch die Finger auf dem Griffbrett.
- „Durch Verformung des Mundraumes lässt sich die Klangfarbe der gesungenen Töne verändern.“ Verschiedene Vokale werden z. B. durch die Verformung der Zunge gebildet. So entstehen verschiedene Klangfarben des gesungenen Tones.
- „Beim Singen hängt die Tonhöhe von der Form der Mundhöhle ab.“ Die Form der Mundhöhle bestimmt die Klangfarbe und auch die Resonanz. Die Tonhöhe hängt von der Schwingung der Stimmlippen ab.
- „Je schneller die Stimmlippen schwingen, desto lauter wird der Ton.“ Die Frequenz der Schwingung bestimmt die Tonhöhe eines Tones und nicht seine Lautstärke. Die Lautstärke hängt u. a. von der Stärke der Schwingung ab, aber auch von der Resonanz.
- „Die Frequenz eines Tones in der Einheit $~\text{Hz}$ ist die Anzahl der Schwingungen pro Minute.“ Die Anzahl der Schwingungen pro Minute wäre eine sehr große Zahl. Die Einheit $~\text{Hz}$ ist stattdessen die Anzahl der Schwingungen pro Sekunde.
8.883
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.385
Lernvideos
36.052
Übungen
32.600
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt
Lieblings Tutoren!!! wie viele Videos habt ihr ?