Hybridisierung am Beispiel von Methan
Erfahre, wie Kohlenstoff mit vier Bindungen möglich ist! Hybridisierung bedeutet das Verschmelzen von Atomorbitalen. Im Fokus steht die ${sp}^3$-Hybridisierung am Beispiel des Methanmoleküls. Sei gespannt auf die Entdeckung seiner Tetraederstruktur. Interessiert? Das und vieles mehr findest du im folgenden Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Hybridisierung am Beispiel von Methan
Hybridisierung – Chemie
Es gibt chemische Elemente wie Kohlenstoff $\ce{C}$, die vier Valenzelektronen besitzen – zwei davon sind ungepaarte Valenzelektronen. Eigentlich können nur die ungepaarten Elektronen Bindungen mit anderen Atomen ausbilden. Aber dennoch kann Kohlenstoff vier gleichwertige Bindungen ausbilden. Wie geht das? In diesem Text erfährst du, was bei der Hybridisierung am Beispiel des Methanmoleküls passiert und warum dieses eine Tetraederstruktur aufweist.
Was versteht man unter Hybridisierung in der Chemie? – Definition
Elektronen eines Atoms befinden sich auf verschiedenen Atomorbitalen. Bei der Hybridisierung findet einfach erklärt eine Verschmelzung zweier verschiedener Atomorbitale statt. Das hybridisierte Molekül kann einen energetisch günstigeren Zustand annehmen und sich somit besser mit anderen Atomen verbinden.
Es gibt verschiedene Arten der Hybridisierung. Es können beispielsweise s- und p-Orbitale verschmelzen. Dabei werden die $sp$-Hybridisierung, die ${sp}^2$-Hybridisierung und die ${sp}^3$-Hybridisierung unterschieden. Letztere wird in diesem Text thematisiert.
${sp}^3$-Hybridisierung am Beispiel von Methan
Im Grundzustand hat das Kohlenstoffatom zwei ungepaarte Valenzelektronen. Das bedeutet, dass sich das Kohlenstoffatom eigentlich nur mit zwei Wasserstoffatomen binden kann. Im Methan $\ce{CH4}$ ist aber ein Kohlenstoffatom mit vier Wasserstoffatomen kovalent verbunden. Wie ist das möglich? Den Ablauf einer Hybridisierung kannst du in dieser Tabelle sehen:
Grundzustand | Kohlenstoff besitzt die Elektronengrundkonfiguration $1s^{2}2s^{2}2p^{2}$. |
Promotion | Es wird eines der beiden $2s$-Elektronen des Kohlenstoffatoms auf das energetisch höhere $2p$-Niveau gebracht. Das Kohlenstoffatom besitzt nun eine höhere Energie und befindet sich im sogenannten angeregten Zustand. |
Hybridisierung | Das $2s$-Orbital und die drei $2p$-Orbitale werden miteinander vermischt. |
Hybridisierter Zustand | Kohlenstoff besitzt nun vier völlig gleichwertige ${sp}^3$-Hybridorbitale. |
Die ${sp}^3$-Hybridisierung des Kohlenstoffatoms kannst du schematisch in der folgenden Abbildung sehen.
Die vier ${sp}^3$-Hybridorbitale des Kohlenstoffatoms können nun mit den vier $s$-Orbitalen der vier Wasserstoffatome überlappen. Dabei überlappt ein ${sp}^3$-Hybridorbital des Kohlenstoffatoms mit einem $s$-Orbital des Wasserstoffatoms. Es bilden sich vier $\sigma$-Bindungen aus. Es liegen also vier identische kovalente Bindungen mit dem gleichen Bindungspartner vor. So entsteht die Tetraederstruktur des Methanmoleküls.
Dieses Video
In diesem Video lernst du eine Erklärung zur ${sp}^3$-Hybridisierung am Beispiel des Methanmoleküls kennen. Das Kohlenstoffatom bildet vier ${sp}^3$-Hybridorbitale aus, die sich mit den $s$-Orbitalen der Wasserstoffatome überlappen. Da die Elektronen den weitmöglichsten Abstand voneinander einnehmen, entsteht eine Tetraederstruktur. Die Hybridisierung ist dabei das Verschmelzen von Atomorbitalen, bei dem ein energetisch günstigerer Zustand erreicht wird.
Im Anschluss an das Video und diesen Text findest du Übungsaufgaben, um dein erlerntes Wissen zu überprüfen. Viel Spaß!
Transkript Hybridisierung am Beispiel von Methan
Guten Tag und herzlich willkommen! In diesem Film geht es um Methan: Molekül und Hybridisierung. An Vorkenntnissen solltet ihr Folgendes mitbringen. Ihr wisst, was Atome und Moleküle sind. Ihr kennt euch aus mit Atomorbitalen und Molekülorbitalen. Der Begriff der Elektronenkonfiguration ist euch bekannt. Ihr wisst, was Valenzelektronen sind. Ihr kennt das Wesen der kovalenten Bindung. Die Begriffe MO-Theorie und VB-Theorie sagen euch etwas. Ihr wisst, dass die Überlappung von Atomorbitalen zu Molekülorbitalen führt. Das Ziel des Videos besteht darin, euch eine eingängige Erklärung für die Tetraederstruktur des Methanmoleküls zu liefern. Der Film ist in 6 Abschnitte unterteilt. 1. Struktur 2. Die Elektronenkonfigurationen 3. Die Valenzelektronen 4. Hybridisierung 5. Endlich ein Tetraeder 6. Zusammenfassung 1. Die Struktur Methan hat die Summenformel CH4. Das Molekül besteht aus 1 Kohlenstoffatom und 4 Wasserstoffatomen. Es ist schon seit langem wissenschaftlich gesichert, dass das Methanmolekül eine Tetraederstruktur besitzt. Im Zentrum des Tetraedermoleküls sitzt ein Kohlenstoffatom. In den Ecken befinden sich die Wasserstoffatome. Alle Wasserstoffatome im Methanmolekül sind gleichberechtigt. Klassisch konnte man das durch die Synthese zeigen. Würde das Methanmolekül nämlich ein Quadrat ausbilden, so müsste man zwei Isomere synthetisieren können. In Wirklichkeit sind aber die sogenannten Isomere gleich. Das aber bedeutet, es kann keine planare Struktur vorliegen, es muss sich um ein Tetraeder handeln. Außerdem gibt es für die Tetraederstruktur des Methans experimentelle Strukturnachweise. Ferner leistete die Schrödinger-Gleichung und ihre Anwendung, die Quantenchemie, hervorragende Dienste für die Strukturaufklärung des Methans. 2. Die Elektronenkonfigurationen 1 Methanmolekül besteht aus 1 Kohlenstoffatom und 4 Wasserstoffatomen. 1 Kohlenstoffatom hat folgende Elektronenkonfiguration. Das 1s-Orbital ist mit 2 Elektronen besetzt - 1s2. Das 2s-Orbital ist ebenfalls mit 2 Elektronen besetzt - 2s2. 2 der 3 2p-Orbitale sind jeweils mit 1 Elektron besetzt - 2p2. Ich möchte anmerken, dass die Energie von oben nach unten steigt. Die Elektronenbelegung erfolgte nach dem Aufbauprinzip der Hundschen-Regel und dem Pauli-Prinzip. Die 2p-Orbitale liegen energetisch noch über den 2s-Orbitalen. Das sieht dann in der Darstellung so aus. Jedes der Wasserstoffatome besitzt 1s-Orbital, das mit jeweils 1 Elektron besetzt ist. Somit haben wir eine vollständige Darstellung aller Atomorbitale, die am Aufbau des Methanmoleküls beteiligt sind. 3. Valenzelektronen Die Valenzelektronen bezeichnet man auch als Außenelektronen. Es sind jene Elektronen, die die chemischen Bindungen eingehen. Im Fall des Kohlenstoffatoms entfernen wir das 1s2-Orbital. Die restlichen Orbitale stellen dann die Valenzelektronen des Kohlenstoffatoms dar. Die Wasserstoffatome sind klein. Alle ihre Elektronen sind Valenzelektronen. Somit haben wir alle Valenzelektronen dargestellt, die für kovalente Bindungen zuständig sind. 4. Hybridisierung Wir wissen bereits aus den vorigen Videos, dass die kovalente Bindung durch Überlappung von Atomorbitalen zustande kommt. Die Atomorbitale der Wasserstoffatome müssen sich somit, um ein Methanmolekül ausbilden zu können, mit den entsprechenden Atomorbitalen des Kohlenstoffatoms überlappen. Hier treffen wir nun auf einige Ungereimtheiten. Schauen wir uns die beiden ersten Elektronenpaare an, so stellen wir fest, dass wir 1 Elektron zu viel haben, denn jedes Orbital kann nur 2 Elektronen aufnehmen. Während man dieses Problem noch durch Verschiebung eines Elektrons, in Anführungsstrichen, das heißt durch Anregung bewältigen kann, so ist das 2. Problem schon bedeutend dramatischer. Das 2s-Orbital und die 2p-Orbitale unterscheiden sich. Das heißt, man erhält unterschiedliche kovalente Bindungen. Aus diesem Dilemma hilft das Konzept der Hybridisierung, das heißt der Gleichmachung von Orbitalen. Zunächst wird 1 der beiden 2s-Elektronen promotiert, das heißt es wird angeregt, auf ein 2p-Niveau gebracht. Im Ergebnis erhält man eine Elektronenkonfiguration von 2s1 2p3. Genau an dieser Stelle setzt die Hybridisierung ein. Es handelt sich um die Vermischung von 1 s-Orbital mit 3 p-Orbitalen. Im Ergebnis entstehen vier völlig gleichwertige Orbitale, 4 Hybridorbitale, 4 sp3-Orbitale. Schematisch kann man die Hybridisierung so darstellen. 1 s-Orbital vereinigt sich mit 3 p-Orbitalen. Und im Ergebnis bilden sich 4 sp3-Hybridorbitale. Die Hybridisierung führt dazu, dass nun eine Überlappung der Atomorbitale möglich ist. Im Ergebnis der Überlappung der Atomorbitale erhalten wir die entsprechenden kovalenten Bindungen. 5. Endlich ein Tetraeder Aus den 4 s-Orbitalen der 4 Wasserstoffatome und den 4 sp3-Hybridorbitalen des Kohlenstoffatoms bilden sich 4 völlig gleiche Bindungen. Grafisch sieht das so aus: Es kommt zu einer Überlappung der entsprechenden Orbitale. Überlappung, wir erinnern uns, hat immer Eigenschaften der VB-Theorie. Es kommt zur Ausbildung von sogenannten s-sp3-Sigma-Bindungen. Die entsprechenden Überlappungen, die die Bindungen zustande kommen lassen, werden rot markiert. Da alle Bindungen hinsichtlich ihrer Nachbarn und auch sonst völlig identisch sind, kann es sich nur um eine Tetraederstruktur handeln. Somit ist es mit einem relativ einfachen Modell gelungen, die Tetraederstruktur des Methanmoleküls zu erklären. Ich verweise auf bereits zugängliche Videos zum Methanmolekül und dessen Struktur. 6. Zusammenfassung Ziel des Videos ist es, die Struktur des Methanmoleküls mithilfe eines einfachen Konzeptes zu erklären. Ein Methanmolekül hat Tetraederstruktur. Wie lässt sich diese Struktur mithilfe der Elektronenkonfiguration der beteiligten Atome erklären? Ein Kohlenstoffatom besitzt unterschiedliche Valenzorbitale. Die Angleichung beider Orbitale geschieht in 2 Schritten. Im 1. Schritt wird eines der beiden 2s-Elektronen auf das 2p-Niveau gebracht, das heißt es wird promotiert. Der 2. Schritt ist die Hybridisierung. Dabei werden das 1 s-Orbital und die 3 p-Orbitale miteinander vermischt. Es entstehen 4 völlig gleichwertige sp3-Hybridorbitale. Diese können mit den 4 s-Orbitalen der 4 Wasserstoffatome überlappen. In jedem einzelnen Fall überlappt ein sp3-Hybridorbital mit einem s-Orbital eines Wasserstoffatoms. Es kommt zu 4 s-sp3-Sigma-Bindungen. Somit haben wir verstanden, dass die Hybridisierung die Voraussetzung für die Überlappung der Atomorbitale ist. Diese wiederum führt zur kovalenten Bindung. Da alle 4 kovalenten Bindungen selbst gleich sind und bezüglich ihrer Nachbarn völlig identisch sind, erhalten wir die Struktur eines Tetraeders. Ich danke für die Aufmerksamkeit. Alles Gute - auf Wiedersehen!
Hybridisierung am Beispiel von Methan Übung
-
Gib an, aus welchen Orbitalen die Hybridorbitale des Methan bestehen.
TippsEin $sp^3$-Orbital sieht aus wie eine unförmige Keule.
Überlege dir die Elektronenkonfiguration von Wasserstoff und Kohlenstoff.
Wasserstoff hat die Elektronenkonfiguration $1s^1$. Kohlenstoff hat die Elektronenkonfiguration $2s^2 2p^2$.
Für die Hybridisierung wird zunächst ein 2s-Orbital des Kohlenstoffs auf das Niveau der 2p-Orbitale gebracht, es wird promotiert.
LösungDie vier hybridisierten $sp^3$-Orbitale des Methanmoleküls bestehen aus dem 2s-Orbital und den drei 2p-Orbitalen des Kohlenstoffs. Zuvor wurde nämlich das zweite 2s-Elektron auf das Niveau der 2p-Orbitale gebracht. Sie bilden die vier $sp^3$-Hybridorbitale, die eine Überlappung mit den Atomorbitalen des Wasserstoffs ermöglichen.
-
Benenne die folgenden Orbitale.
TippsEines der Orbitale ist das Ergebnis der Mischung der anderen beiden Orbitale.
Lösung$s$-Orbitale sind klein und kugelförmig. Etwas größer sind die keulenförmigen $p$-Orbitale. Eine Mischung aus einem $s$- und drei $p$-Orbitalen ist das ungleichförmige $sp^3$-Hybridorbital.
-
Ordne die Orbitale nach ihrem Energieniveau.
TippsDie Orbitale werden mit höherer Energie komplexer.
LösungDie verschiedenen Orbitale besitzen ein unterschiedliches Energieniveau. Das energieärmste ist das s-Orbital. Etwas energiereicher ist das p-Orbital. Danach kommt das d-Orbital. Am energiereichsten ist das f-Orbital.
Natürlich gibt es das dir sicher schon bekannte Schema zum Energieniveau der Orbitale. Daran siehst du, dass es ab dem 4s-Orbital nicht mehr ganz chronologisch weitergeht. Darauf folgt nämlich das 3d-Orbital und danach das 4p-Orbital. So kommt diese auf den ersten Blick ungeordnete Reihenfolge zustande.
Nach der Hundschen Regel werden die Orbitale gleicher Energie zuerst einfach, danach doppelt belegt.
-
Gib an, wie folgende Moleküle hybridisiert sind.
Tipps$sp^3$-Hybridisierungen sind tetraedrisch, $sp^2$-Hybridisierungen sind trigonal planar und $sp$-Hybridisierungen sind linear.
LösungDurch unterschiedliche Hybridisierungen entstehen auch unterschiedliche Strukturen. Bei einer $sp^3$-Hybridisierung, wie bei Methan, Ammoniak oder Wasser, entsteht ein Tetraeder. Dies ist bei Ammoniak und Wasser durch die freien Elektronenpaare möglich, die das Molekül in die entsprechende Struktur drücken. Freie Elektronenpaare benötigen immer etwas mehr Freiraum.
Bei einer $sp^2$-Hybridisierung, wie bei Ethen, die durch die Doppelbindung zwischen den Kohlenstoffatomen entsteht, bildet sich eine trigonal-planare Struktur. Beteiligt sind demnach ein $s$-Orbital und 2 $p$-Orbitale.
Linear sind solche Moleküle, die eine $sp$-Hybridisierung besitzen, wie Ethin. Es besitzt eine Dreifachbindung zwischen den Kohlenstoffatomen, weshalb an der Hybridisierung nur jeweils ein $s$- und ein $p$- Orbital beteiligt sind.
-
Gib die Elektronenkonfigurationen von Wasserstoff und Kohlenstoff an.
TippsDie hochgestellte Zahl entspricht in der Summe der Gesamtanzahl der Elektronen des Atoms.
Die Anzahl der Elektronen entspricht der Ordnungszahl eines Elementes.
Die Energieniveaus haben folgende Reihenfolge:
LösungWasserstoff steht an Position eins im Periodensystem. Es besitzt ein Elektron. Laut der Reihenfolge der Energieniveaus besitzt es ein s-Orbital, das nur durch ein Elektron besetzt ist. Es besitzt also die Elektronenkonfiguration $1s^1$.
Genauso geht man bei Kohlenstoff vor. Es steht an sechster Stelle im Periodensystem und besitzt 6 Elektronen. Das 1s-Orbital kann maximal durch zwei Elektronen besetzt werden. Es sind also noch 4 Elektronen übrig. Weiter geht die Elektronenbesetzung mit dem 2s-Orbital, danach mit dem 2p-Orbital. Die Elektronenkonfiguration von Kohlenstoff lautet also $1s^2 2s^2 2p^2$.
-
Ergänze die Hybridisierung zu folgenden C-Atomen.
TippsDreifachbindungen besitzen eine $sp$-Hybridisierung.
LösungKohlenstoffatome mit Einfachbindungen sind $sp^3$-hybridisiert. Kohlenstoffe mit einer Doppelbindung sind dagegen $sp^2$-hybridisiert. Dreifachbindungen verursachen eine $sp$-Hybridisierung.
Das lässt sich auch gut an den Bindungswinkeln im Molekül erkennen. Einfach gebundener Kohlenstoff ist tetraedrisch umgeben. Bei einer Doppelbindung entsteht eine trigonal-planare Umgebung und bei einer Dreifachbindung beträgt der Winkel 180°. Die beiden C-Atome sind also linear angeordnet.
8.994
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.249
Lernvideos
35.817
Übungen
32.576
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Chemie
- Periodensystem
- Ammoniak Verwendung
- Entropie
- Salzsäure Steckbrief
- Kupfer
- Stickstoff
- Glucose Und Fructose
- Salpetersäure
- Redoxreaktion
- Schwefelsäure
- Natronlauge
- Graphit
- Legierungen
- Dipol
- Molare Masse, Stoffmenge
- Sauerstoff
- Elektrolyse
- Bor
- Alkane
- Verbrennung Alkane
- Chlor
- Elektronegativität
- Tenside
- Toluol, Toluol Herstellung
- Wasserstoffbrückenbindung
- Fraktionierte Destillation Von Erdöl
- Carbonsäure
- Ester
- Harnstoff, Kohlensäure
- Reaktionsgleichung Aufstellen
- Redoxreaktion Übungen
- Cellulose Und Stärke Chemie
- Süßwasser und Salzwasser
- Katalysator
- Ether
- Primärer Alkohol, Sekundärer Alkohol, Tertiärer Alkohol
- Van-der-Waals-Kräfte
- Oktettregel
- Kohlenstoffdioxid, Kohlenstoffmonoxid, Oxide
- Alfred Nobel Und Die Dynamit Entdeckung
- Wassermolekül
- Ionenbindung
- Phosphor
- Saccharose Und Maltose
- Aldehyde
- Kohlenwasserstoff
- Kovalente Bindungen
- Wasserhärte
- Peptidbindung
- Fermentation
Zu viel Vorwissen nötig...
Ich finde es nicht ganz glücklich, dass die Energie in diesem Video anders herum aufgetragen ist. Niedriges Energieniveau befindet sich doch schon ganz intuitiv "unten".
GENAU
robottER
Perfekt erklärt!