Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Sachaufgaben zur Radialkraft und Radialbeschleunigung

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Radialkraft Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 5.0 / 3 Bewertungen
Die Autor*innen
Avatar
Jochen Kalt
Sachaufgaben zur Radialkraft und Radialbeschleunigung
lernst du in der Oberstufe 5. Klasse - 6. Klasse - 7. Klasse

Grundlagen zum Thema Sachaufgaben zur Radialkraft und Radialbeschleunigung

In diesem Video werden wir gemeinsam Übungsaufgaben zum Thema Radialkraft und Radialbeschleunigung lösen. Dazu wiederholen wir erst ein paar Grundlagen zu diesem Thema. Danach werden wir drei Aufgaben zu Radialkraft und Radialbeschleunigung gemeinsam durchrechnen. In allen drei Aufgaben geht es darum, die Bewegung einer Kugel an einem Drahtseil zu beschreiben, wie man sie von der Sportart Hammerwerfen kennt. Die erste Aufgabe wird sein, in eine Skizze alle relevanten Größen einer Kreisbewegung einzuzeichnen. In der zweiten Aufgabe soll die Radialkraft berechnet werden, die benötigt wird, um eine Kreisbewegung auszuführen. Die dritte Aufgabe besteht darin, aus gegebener Masse und Radialbeschleunigung die Geschwindigkeit einer Kugel zu bestimmen.

Transkript Sachaufgaben zur Radialkraft und Radialbeschleunigung

Hallo und herzlich willkommen! In diesem Video werden wir gemeinsam Übungsaufgaben zum Thema Radialkraft und Radialbeschleunigung lösen. Dazu wiederholen wir erst ein paar Grundlagen zu diesem Thema. Danach werden wir drei Aufgaben zu Radialkraft und Radialbeschleunigung gemeinsam durchrechnen. In allen drei Aufgaben geht es darum, die Bewegung einer Kugel an einem Drahtseil zu beschreiben, wie man sie von der Sportart des Hammerwerfens kennt. Die erste Aufgabe wird sein, in eine Skizze alle relevanten Größen einer Kreisbewegung einzuzeichnen. In der zweiten Aufgabe soll die Radialkraft berechnet werden, die benötigt wird, um eine Kreisbewegung auszuführen. Die dritte Aufgabe besteht darin, aus gegebener Masse und Radialbeschleunigung die Geschwindigkeit einer Kugel zu bestimmen. Und damit kann es auch schon losgehen. Bevor wir mit den Aufgaben loslegen können, wirst du eine kurze Wiederholung der wichtigsten Größen und Zusammenhänge der Radialkraft und Radialbeschleunigung sehen. Wir betrachten die Bewegung eines Körpers mit der Masse m, der sich auf einer Kreisbahnmit dem Radius r bewegt. Die Geschwindigkeit des Körpers liegt tangential am Kreis an und wird mit vtang abgekürzt. Ohne Krafteinwirkung würde sich der Körper auf einer geraden Linie bewegen. Damit er sich auf einer Kreisbahn bewegt, ist eine Kraft in Richtung des Kreismittelpunktes nötig. Diese Kraft nennt man Radialkraft. Sie wird mit FR abgekürzt. FR= dem Produkt aus der Masse m und der Tangentialgeschwindigkeit vtang2 geteilt durch den Radius r (FR=mvtang2/r). Nach dem 2. Newtonschen Gesetz liegt immer eine Beschleunigung vor, wenn auf einen Körper eine Kraft wirkt. Somit hat die Radialkraft FR die Radialbeschleunigung aR zufolge. aR=FR/m, also =vtang2/r. Die Radialbeschleunigung zeigt in die gleiche Richtung wie die Radialkraft, nämlich zum Kreismittelpunkt. Mit diesem Vorwissen können wir uns auch schon daran machen, die Aufgaben zu lösen. In allen drei Aufgaben geht es um eine Kugel, die an einem Drahtseil befestigt ist und um den Mittelpunkt eines Kreises rotiert. Eine solche Bewegung findet bei der Sportart Hammerwerfen statt. Die Rotation soll dabei gegen den Uhrzeigersinn ablaufen. Da die Kugel wesentlich schwerer ist als das Drahtseil, betrachten wir die Bewegung so, als ob die Kugel alleine eine Kreisbewegung ausführen würde, und vernachlässigen das Seil komplett. Die erste Aufgabe lautet: Zeichne alle relevanten Größen in die Skizze ein. Um zu wissen, welche Größen relevant sind, erinnern wir uns zurück an die Formel für die Radialkraft. Es gilt FR=mvtang2/r. Die Masse m zeichnen wir bei der Kugel und den Radius r bei der Verbindung von Kreismittelpunkt zu Kugel ein. Die Tangentialgeschwindigkeit vtang können wir dann auch schon einzeichnen, da wir die Richtung der Bewegung kennen. Die Kugel rotiert gegen den Uhrzeigersinn, vtang zeigt also nach oben. Und natürlich muss auch die Radialkraft selbst eingezeichnet werden. Wie du aus der Wiederholung weißt, zeigt sie zum Kreismittelpunkt, also entlang der Verbindungslinie zwischen Kreismittelpunkt und Kugel. Die Radialbeschleunigung zeigt in die gleiche Richtung wie die Radialkraft. Damit wären jetzt alle relevanten Größen der Bewegung eingezeichnet. Auch wenn es mal nicht Teil der Aufgabenstellung ist, ist es immer ratsam, sich erst eine Skizze zu machen, um die Größen einzuzeichnen. So fällt es dir leichter, Zusammenhänge zu erkennen und den Überblick zu wahren. Die zweite Aufgabe lautet: Es sei vtang=28m/s. Das Gewicht der Kugel m=7,3kg und die Länge des Drahtseiles r=1,2m. Welche Radialkraft muss ein Hammerwerfer aufbringen, um diese Bewegung durchzuführen? Um das zu berechnen, muss man die Formel für die Radialkraft nehmen und die gegebenen Größen einsetzen. Die gegebenen Größen sind: m, vtang und r. Die gesuchte Größe ist FR. F=mvtang2/r=7,3kg(28m/s)2/1,2m. Das ergibt ein Ergebnis von ungefähr 4769. kgm/s2 ist die Darstellung von der Einheit Newton in SI-Einheiten. Wir können also auch schreiben: FR=4769N. Das ist die Kraft, die der Hammerwerfer aufbringen muss, um einen guten Wurf hinzulegen. Damit du dir besser vorstellen kannst, was das bedeutet, ein Vergleich: 4796 Newton entsprechen der Gewichtskraft FG von 479,6 Kilogramm. Beim Abwurf des Hammers bringt der Hammerwerfer also die gleiche Kraft auf, die zum Heben von 479,6 Kilogramm nötig wären. Das ist ganz schön viel. Die dritte Aufgabenstellung lautet: Auf die Kugel eines Hammerwerfers wirkt eine Radialbeschleunigung aR von 600m/s2. Das Drahtseil, an dem die Kugel befestigt ist, hat eine Länge von r=1,2m. Berechne die Tangentialgeschwindigkeit vtang. Die gegebenen Größen sind hier also aR und r. Gesucht ist vtang. Um vtang zu berechnen, nehmen wir die Formel für die Radialbeschleunigung. Sie lautet: aR=vtang2/r. Da wir vtang berechnen wollen, bringen wir r auf die andere Seite und ziehen die Wurzel aus dem Produkt von aR und r. Die Tangentialgeschwindigkeit vtang ist dann also gleich Wurzel aus √600m/s21,2m. Das ergibt einen Wert von ungefähr 26,8m/s. So, das war es mit den Sachaufgaben zu Radialkraft und Radialbeschleunigung. Ich hoffe, du konntest alles nachvollziehen und fandest es interessant. Tschüss und bis zum nächsten Mal!

3 Kommentare
  1. gut

    Von Kiana, vor mehr als 2 Jahren
  2. Vielen Dank für den Hinweis. Wir haben den Lösungsweg angepasst.

    Beste Grüße
    Deine Redaktion

    Von René P., vor mehr als 9 Jahren
  3. Bei der 4. Übungsaufgabe des obigen Videos, ist bei der Lösung die Einheit fehlerhaft! Es müsste km/s heißen und nicht m/s!

    Von Casper, vor mehr als 9 Jahren

Sachaufgaben zur Radialkraft und Radialbeschleunigung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Sachaufgaben zur Radialkraft und Radialbeschleunigung kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.152

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.600

Lernvideos

35.593

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden