Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wie funktioniert eine Batterie?

Verstehe Spannungsquellen in der Physik Erfahre, wie Spannungsquellen einen Stromkreis antreiben. Entdecke, wie galvanische Elemente wie Batterien elektrische Energie erzeugen. Lerne Beispiele kennen, wie Batterien und Solarenergie. Interessiert? Das und vieles mehr findest du im folgenden Text.

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Wie funktioniert eine Batterie?

Was ist eine Spannungsquelle in der Physik?

1/5
Bereit für eine echte Prüfung?

Das Wie Funktioniert Eine Batterie? Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.2 / 20 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wie funktioniert eine Batterie?
lernst du in der Unterstufe 4. Klasse - Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Wie funktioniert eine Batterie?

Die Spannungsquelle in der Physik

Jeder Stromkreis mit Verbraucher benötigt eine Spannungsquelle. Sie liefert die Spannung, die den Strom antreibt. Eine Spannungsquelle ist per Definition ein elektrisches Bauelement mit zwei Anschlüssen, zwischen denen es eine elektrische Spannung gibt. Aus physikalischer Sicht handelt es sich meist um einen Energiewandler, der zum Beispiel chemische Energie in elektrische Energie umwandelt. Es gibt unterschiedliche Schaltzeichen für Spannungsquellen, je nach ihrer Bauart und Funktionsweise.

Symbol Spannungsquelle Physik

Aber wie kann man elektrische Spannung erzeugen? Ein wichtiges Beispiel ist die Batterie, die ein galvanisches Element ist.

Galvanisches Element

In einer einfachen Ausführung besteht ein galvanisches Element aus zwei Elektroden aus unterschiedlichen Metallen, von denen eines edler als das andere ist. Was das genau bedeutet, erfährst du in unserem Video zu Metallen und ihrer Affinität zu Sauerstoff. Sie befinden sich in einem flüssigen Elektrolyt, also einer leitfähigen Flüssigkeit. Wir betrachten ein Beispiel mit einer Kupfer- und einer Zinkelektrode, die in eine Kupfersulfatlösung getaucht sind. Das kann in einem gemeinsamen Becken sein, wenn es eine halbdurchlässige Membran zwischen den beiden Elektroden gibt, oder in zwei getrennten Becken, wenn die Flüssigkeiten über eine Ionenbrücke in Verbindung stehen. Die beiden Elektroden sind außerdem durch einen leitenden Draht miteinander verbunden.

Zink ist unedler als Kupfer. Aus diesem Grund findet an der Zinkelektrode eine Oxidation statt. Das bedeutet, dass positiv geladene Zinkionen in die Elektrolytlösung wandern. Die Elektrode weist daher einen Elektronenüberschuss auf, ist also leicht negativ geladen.

Kupfer ist edler als Zink. Deswegen findet an der Kupferelektrode eine Reduktion statt, es lagern sich positiv geladene Ionen aus der Kupfersulfatlösung an der Elektrode ab. Da sie positiv geladen sind, baut sich eine Spannung zwischen den Elektroden auf. Durch den Draht, der die beiden Elektroden verbindet, wandern Elektronen aus der Zinkelektrode zur Kupferelektrode, wo sie von den positiven Ionen aufgenommen werden.

Galvanische Zelle

Dieser Prozess kann so lange ablaufen, bis sich alle Ionen aus der Elektrolytflüssigkeit an den Oberflächen der Elektroden angelagert haben oder bis diese vollständig mit Ionen bedeckt sind – also eine weitere Anlagerung unmöglich wird.

Man kann ein solches galvanisches Element auch mit einem Apfel oder einer Kartoffel aufbauen. Du kannst selbst mit verschiedenen Früchten experimentieren um herauszufinden, welche die höchste Spannung liefert.

Teste dein Wissen zum Thema Wie Funktioniert Eine Batterie?!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Spannungsquellen – Beispiele

In der folgenden Tabelle findest du ein paar Beispiele für Spannungsquellen im Alltag:

Spannungsquelle Spannung in V
Batterie 1,5 bis 9,0
Fahrraddynamo 6
Smartphoneakku \approx 4,0
Solarzelle 0,5
Zitteraal \approx 800

Spannungsquellen – Zusammenfassung

In diesem Video lernst du die galvanische Zelle als Spannungsquelle kennen. Du erfährst außerdem einige grundlegende Merkmale von Spannungsquellen. Du findest neben Text und Video auch zum Thema elektrische Spannungsquelle Aufgaben und ein Arbeitsblatt.

Transkript Wie funktioniert eine Batterie?

Was sind die wichtigsten Dinge, die der moderne Mensch zum Überleben braucht? Klar: Akku und Netz fürs Handy. Wir wollen uns mit einem dieser Grundpfeiler der menschlichen Zivilisation beschäftigen, wobei wir uns den VORLÄUFER des Akkus genauer ansehen: die Batterie. Batterien und Akkus gibt es in verschiedenen Größen. Sie alle erfüllen denselben Zweck: Sie stellen eine elektrische Spannung her, die je nach Zusammensetzung unterschiedlich groß sein kann. Die Spannung ermöglicht einen Stromfluss, der von einem angeschlossenen "Verbraucher" genutzt werden kann. Aber wie ENTSTEHT die elektrische Spannung in einer Batterie? Um das zu verstehen, müssen wir die CHEMISCHEN Eigenschaften von Stoffen, genauer gesagt die von METALLEN, verstehen. Aber das ist nicht so wild, denn die Chemie dahinter lässt sich ganz einfach zusammenfassen: Haben wir zwei Metalle beieinander, gibt immer EINES Elektronen AB und das ANDERE nimmt diese AUF – wenn das für beide energetisch günstig ist. LITHIUM, das du vielleicht vom "Lithium-Ionen-Akku" kennst, ist zum Beispiel ein Metall, das sehr leicht Elektronen ABGIBT, während Edelmetalle wie Gold oder Platin das so gut wie NIE tun. Hat man also zwei Metalle beieinander, gibt es immer eines, das dem anderen seine Elektronen aufs Auge drücken möchte. Man spricht von einer "Potentialdifferenz" zwischen den beiden Elementen – und das ist nichts Anderes als die elektrische SPANNUNG, da die ausgetauschten Elektronen elektrische Ladungsträger sind. Nimmt man zum Beispiel die Metalle "Zink" und "Kupfer", ergibt die Potentialdifferenz eine Spannung von eins-Komma-eins Volt. Alessandro Volta hat DAMIT im Jahr 1799 seine "Volta-Säule" gebaut – die erste brauchbare Batterie. Der Trick dabei waren in Salzlösung getränkte Stofffetzen, die er zwischen die Zink- und Kupferscheiben gequetscht hat. Denn erst durch die Salzlösung werden die Ionen, also die geladenen Atome, die die Spannung aufrechterhalten, ausgetauscht. So wird die chemische Reaktion der beiden Metalle am Laufen gehalten und es bilden sich Minuspol und Pluspol. "Zwei Metalle und eine Salzlösung" – so sind auch heute noch Batterien aufgebaut. Statt der Stofffetzen hält man sich aber eher an den Aufbau einer "Galvanischen Zelle", auch "Galvanisches Element" genannt. Die beiden Metalle – bleiben wir mal bei Zink und Kupfer – stellen die "Elektroden" dar. Zink ist die "Anode" – der MINUS-Pol, an dem Elektronen FREIWERDEN. Kupfer ist die "Kathode" – der PLUS-Pol, der Elektronen BINDET. In diesem Aufbau tauchen die Elektroden jeweils in einer eigenen Kammer in eine Salzlösung, die sogenannte "Elektrolyt-Lösung", ein. Links entstehen Zink-Ionen durch die Abgabe von Elektronen, rechts befinden sich bereits Kupfer-Ionen, denn meist wird hier "Kupfersulfatsalz" als Elektrolyt-Lösung genommen. Eine "Salzbrücke", auch "Ionenbrücke" genannt, stellt sicher, dass Ionen zwischen den beiden Kammern ausgetauscht werden können, ohne dass sich die Lösungen vermischen. Das ist wichtig, wenn der "äußere Stromkreis" der Batterie geschlossen wird, also ein "Verbraucher" angeschlossen wird. Jetzt können die in der Anode freiwerdenden Elektronen zur Kathode übergehen – es fließt Strom. Dazu müssen allerdings Sulfat-Ionen aus der Elektrolyt-Lösung im "inneren Stromkreis" von der Kathode zur Anode wandern können, denn nur dann werden die positiven Ladungen der links entstehenden Zink-Ionen fortlaufend ausgeglichen, während rechts die Kupfer-Ionen weiterhin eintreffende Elektronen aufnehmen. So entsteht ein schöner Kreislauf: "Ionenstrom" unten, und "Elektronenstrom" oben. Dabei wird die CHEMISCHE Energie, die in der Galvanischen Zelle gespeichert ist, in ELEKTRISCHE Energie umgewandelt. Leider geht das nicht in alle Ewigkeit, denn irgendwann sind alle Sulfat-Ionen links angereichert und damit das chemische Potential abgebaut – die Batterie ist leer. Es sei denn, man schafft es irgendwie, den Prozess rückgängig zu machen, also ELEKTRISCHE Energie einzuspeisen, um das CHEMISCHE Potential der Zelle wiederherzustellen. Das klappt eher weniger gut mit Zink und Kupfersulfat, aber mit anderen Materialen dafür umso besser – wie zum Beispiel beim berühmten "Lithium-Ionen-Akku". "Akku" ist kurz für "Akkumulator", wobei "akkumulieren" soviel wie "ansammeln" bedeutet. Beim Laden eines Akkus werden also durch die Zufuhr von elektrischer Energie die Ionen wieder dort angesammelt, wo sie zu Beginn waren – und das chemische Potential so wiederhergestellt. Wir sammeln uns jetzt auch nochmal und fassen zusammen: Batterie und Akku folgen im Wesentlichen dem Aufbau einer "Galvanischen Zelle". Ein Elektronstrom fließt im ÄUẞEREN Stromkreis zwischen Anode und Kathode, solange im INNEREN Stromkreis der Ladungsausgleich über einen Ionenstrom stattfinden kann. So wird CHEMISCHE Energie in ELEKTRISCHE Energie umgewandelt. Mit unterschiedlichen Elektrodenmaterialien können unterschiedlich starke Spannungen erzeugt werden. Bestimmte Materialien ermöglichen es auch, die Energieumwandlung UMZUKEHREN, wie zum Beispiel beim "Lithium-Ionen-Akkumulator". Aber auch die geballte Macht dieser Umarmung von Chemie und Physik hilft dir nicht weiter, wenn du wieder mal das falsche Ladekabel eingesteckt hast.

1 Kommentar
  1. Gut erklärt!

    Von ◥◤◡◥◤ , vor etwa einem Jahr

Wie funktioniert eine Batterie? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wie funktioniert eine Batterie? kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.213

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.650

Lernvideos

37.086

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden