Zahlenfolgen fortsetzen (Muster erkennen)
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Zahlenfolgen fortsetzen (Muster erkennen)
Nach dem Schauen dieses Videos wirst du in der Lage sein, Muster in Zahlenfolgen zu erkennen und diese so fortzusetzen.
Zunächst lernst du, wie Zahlenfolgen mit den vier Grundrechenarten funktionieren. Anschließend siehst du, wie verschachtelte Zahlenfolgen aufgebaut sind.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Zahlenfolge, Folgenglied, Grundrechenarten, Muster und Struktur.
Nach diesem Video wirst du darauf vorbereitet sein, die Begriffe “arithmetische” und “geometrische Zahlenfolgen” kennenzulernen.
Transkript Zahlenfolgen fortsetzen (Muster erkennen)
Hier siehst du ein Muster! Und auch hier erkennt man eins. Das ist ja ein richtig hübsches Muster! Aber dieses erst! Wun-der-schön! Oder? Was? Du siehst da kein Muster? Keine Sorge! Nach diesem Video erkennst du Muster in Zahlenfolgen wie ein Profi! Wir fangen direkt mal mit einem einfachen Beispiel an. Siehst du bei dieser Zahlenfolge was sich von Zahl zu Zahl ändert? In jedem Schritt wird drei hinzuaddiert. Wenn wir das nächste Folgenglied, also die nächste unbekannte Zahl eintragen müssten, wäre das hier zweiundzwanzig. Dieses Muster ist noch ziemlich simpel. Aber es geht natürlich auch etwas komplizierter. Wenn wir eine Zahlenfolge wie diese haben, können wir zuerst immer darauf achten, ob die Zahlen von Mal zu Mal größer, oder kleiner werden. Hier werden sie kleiner, es liegt also nahe, dass wir eine Zahl subtrahieren müssen. Und tatsächlich – wir erkennen, dass die Zahlen immer um fünf kleiner werden. Die nächste Zahl unserer Folge wäre also eine neun! Nächstes Beispiel. Hier soll die fehlende Zahl ergänzt werden. Um sie zu bestimmen, müssen wir zuerst das Muster erkennen, das der Folge zugrunde liegt. Die Zahlen werden definitiv immer größer. Aber vom ersten Folgenglied zum zweiten sind es drei, dann sechs und schließlich zwölf. Da wird immer eine andere Zahl addiert. Es wird ein Schuh draus, wenn wir das Ganze mal als Multiplikation betrachten. Wir erkennen nämlich, dass die Zahlen von Mal zu Mal doppelt so groß werden. Wenn wir Zahlenfolgen untersuchen und das dahinter liegende Muster verstehen wollen, sollten wir also nicht nur Plus und Minus bedenken, sondern grundsätzlich alle vier Grundrechenarten im Hinterkopf haben. Die fehlende Zahl einzutragen ist jetzt ein Kinderspiel! Da muss natürlich eine fünf hin! Kleiner Spaß, achtundvierzig ist die richtige Lösung! So, dann hier mal eine Folge für Fortgeschrittene! Erkennst du das Muster? Mit welchen Zahlen wird dieser Folge fortgeführt? Wenn du magst, kannst du das Video kurz pausieren. Dann gibt's die Auflösung! Bei dieser Folge werden die Zahlen mal größer und mal kleiner. Anscheinend wechseln sich also zwei verschiedene Rechenschritte ab. Wenn die Zahlen abnehmen, ist die Differenz immer gleich! Hier wird also jeweils eine drei subtrahiert. Du hast sicher schon erkannt, dass die Zahlen, wenn sie größer werden, verdoppelt werden! An diesen Stellen wird also wieder „mal zwei“ gerechnet! Und schon haben wir das Muster entschlüsselt! Die nächsten beiden Zahlen sind also neunzehn und achtunddreißig. In diesem Beispiel wurden zwei verschiedene Rechenschritte zu einem Muster kombiniert. Das ist auch bei dieser Folge der Fall, aber auf eine andere Weise! Kannst du das System entschlüsseln und die nächste Zahl nennen? Versuch es ruhig mal! Offensichtlich werden die Zahlen hier immer größer! Aber auch der Abstand zwischen den Zahlen wird von Mal zu Mal größer und wir finden leider keine Zahl, die wir als Multiplikator einsetzen können. Aber wenn wir genau hinschauen, können wir erkennen, dass die Änderungen selbst eine Struktur haben. Jedes Mal wird die addierte Zahl um zwei Größer. Ein verschachteltes Muster! Man muss also immer die Augen offenhalten. Die nächste Zahl wäre also? Genau, die sechsunddreißig! Was sollten wir also alles bedenken, wenn wir Zahlenfolgen entschlüsseln möchten? Grundsätzlich können wir uns zuerst orientieren, indem wir schauen, ob die Zahlen einer Folge von Mal zu Mal größer oder kleiner werden. Manchmal ist auch beides der Fall. Anschließend ist es sinnvoll, zuerst zu testen, ob wir das Muster durch Plus- oder Minusrechnung wiedergeben können. Klappt das nicht, können wir es mit „mal“ und „geteilt“ versuchen. Meistens reichen die vier Grundrechenarten schon, um die Struktur von Zahlenfolgen zu beschreiben. Sie können aber auch miteinander kombiniert sein. Und? Siehst du das Muster jetzt? Zugegeben: Das ist in diesem Fall schon etwas schwerer. Findest du trotzdem heraus welche Zahlen die nächsten sind? Schreib es uns gerne in die Kommentare! Apropos Folgen: Folgt ihr uns eigentlich schon bei Insta?
Zahlenfolgen fortsetzen (Muster erkennen) Übung
-
Gib den richtigen Rechenschritt für das Muster der Zahlenfolge an.
-
Vervollständige die Zahlenfolgen mit der jeweils fehlenden Zahl.
-
Ermittle die passenden Ergänzungen der Zahlenfolgen.
-
Vervollständige die Zahlenfolgen mit den fehlenden Zahlen.
-
Bestimme die nächsten beiden Zahlen der Zahlenfolge.
-
Bestimme das Muster und setze die Zahlenfolge fort.
8.910
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.237
Lernvideos
35.786
Übungen
32.546
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
Ich finde das video zu einem sehr komplizierten Thema (für mich) sehr schnell und hilfreich erklärt.
Vielen dank und sehr hilfreiche videos hat Sofatutor!
Bey
Die zahlen werden abwechselnd subtrahiert und multipliziert. Die nächste Zahl ist 14.
Ich finde das Viedeo übrigens sehr hilfreich und Gut erklärt
Die Lösung ist: -4 *3 -6 *3 -8 *3 -10 *3 -12 *3 -14 *3...
Das Muster ist immer dividiert mit 2 und mal genommen mit 3