Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Trigonometrie – Einführung

Trigonometrie ist ein Bereich der Geometrie, der sich mit den Seitenverhältnissen in rechtwinkligen Dreiecken beschäftigt. Mithilfe von Formeln wie Sinus, Cosinus und Tangens kannst du Seitenlängen und Winkel berechnen. Klingt spannend? Dann lies weiter, um noch mehr darüber zu erfahren!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Trigonometrie Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.2 / 99 Bewertungen
Die Autor*innen
Avatar
Team Digital
Trigonometrie – Einführung
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Beschreibung zum Video Trigonometrie – Einführung

Was ist eigentlich Trigonometrie? Und was hat sie mit Dreiecken und Strahlensätzen zu tun? Finde es in diesem Video heraus. Du wirst lernen, womit sich die Trigonometrie beschäftigt. Außerdem lernst du, was ähnliche Dreiecke sind und welche Bedeutung Ähnlichkeit für Seitenverhältnisse hat. Du wirst außerdem den Sinus und den Cosinus kennenlernen.

Grundlagen zum Thema Trigonometrie – Einführung

Trigonometrie – Definition

Die Trigonometrie gehört in der Mathematik zur Geometrie. Aber was genau ist Trigonometrie? Schauen wir uns dazu das Wort selbst genauer an. Es setzt sich zusammen aus Trigon und metrie. Beide Begriffe stammen aus dem Griechischen. Trigon bedeutet Dreieck und metrie deutet darauf hin, dass etwas gemessen werden soll.

Es geht also um das Vermessen von Dreiecken.
Genauer geht es in der Trigonometrie um Seitenverhältnisse von rechtwinkligen Dreiecken.

Trigonometrie – Dreieck

Sehen wir uns ein rechtwinkliges Dreieck an:

Dreieck

Die Grundgrößen, die man mithilfe der Trigonometrie an einem Dreieck beschreiben kann, sind:

  • die Seitenlängen $a,b,c$
  • die Winkel $\alpha, \beta, \gamma$

Zwei Dreiecke heißen ähnlich, wenn sie die gleichen Winkel haben. Solche Dreiecke haben jeweils die gleichen Seitenverhältnisse. Aussagen über solche Seitenverhältnisse haben wir bisher mithilfe der Strahlensätze getroffen.

Ähnliche Dreiecke

Die beiden Dreiecke in der Abbildung sind ähnlich zueinander, da sie die gleichen Winkel haben. Daher ist das Verhältnis der Seitenlängen der blauen Seite zur grünen Seite bei beiden Dreiecken gleich: $4{,}5:6 = 0{,}75$ und $3:4 = \frac{3}{4} = 0{,}75$.

Seitenverhältnisse können aber nicht nur über die Strahlensätze beschrieben werden. Sie können auch mit den Winkeln im Dreieck in Verbindung gebracht werden. Dazu dient die Trigonometrie.

Wusstest du schon?
Die Ägypterinnen und Ägypter der Antike nutzten schon vor über $3\,000$ Jahren Trigonometrie, um die präzisen Winkel und Ausrichtungen ihrer Pyramiden zu berechnen. Ohne diese mathematischen Grundlagen wären die beeindruckend stabilen und symmetrischen Bauwerke nicht möglich gewesen!

Trigonometrie – Formeln

In der Trigonometrie geht es zunächst nur um rechtwinklige Dreiecke. Einen wichtigen Satz über rechtwinklige Dreiecke kennst du bereits: den Satz des Pythagoras. Er lautet:

$a^{2} + b^{2} = c^{2}$

Wenn du zwei Seiten eines rechtwinkligen Dreiecks kennst, kannst du also die dritte berechnen.

Trigonometrie – Winkel

Ein weiterer Satz ist der Winkelsummensatz. Kennst du in einem rechtwinkligen Dreieck außer dem rechten Winkel auch die Winkelgröße eines weiteren Winkels, so kannst du mithilfe der Innenwinkelsumme die Winkelgröße des dritten Winkels berechnen.

Winkelsummensatz.jpg

Sind zum Beispiel $\gamma$ als rechter Winkel und $\beta$ vorgegeben, so kannst du $\alpha$ mit folgender Formel berechnen:

$\alpha = 180^\circ - \beta - \gamma$

Trigonometrie – Sinus

Der Sinus eines Winkels ist der Name für ein Seitenverhältnis im rechtwinkligen Dreieck.

Bezeichnen wir den rechten Winkel mit $\gamma$, so liegt dem Winkel $\gamma$ die Hypotenuse $c$ des Dreiecks gegenüber. Dem Winkel $\beta$ liegt die Kathete $b$ gegenüber. Die andere Kathete $a$ liegt an dem Winkel $\beta$.

Weil die Kathete $b$ dem Winkel $\beta$ gegenüberliegt, nennt man sie die Gegenkathete von $\beta$. Die Kathete $a$ ist entsprechend die Ankathete des Winkels $\beta$. Umgekehrt ist $b$ die Ankathete von $\alpha$ und $a$ die Gegenkathete von $\alpha$.

In jedem rechtwinkligen Dreieck ist der Sinus eines Winkels (z. B. $\beta$) das Seitenverhältnis der Gegenkathete des Winkels zur Hypotenuse des Dreiecks . Als Formel geschrieben sieht das so aus:

$\text{Sinus}(\beta) = \dfrac{\text{Gegenkathete (von }\beta\text{)}}{\text{Hypotenuse}}$

Die folgende Abbildung zeigt ein rechtwinkliges Dreieck mit den oben beschriebenen Bezeichnungen für Seiten und Winkel:

Definition des Sinus

Weil alle ähnlichen Dreiecke die gleichen Seitenverhältnisse haben, hängt der Sinus des Winkels als Seitenverhältnis gar nicht von den Seiten, sondern nur von dem Winkel ab.
Man schreibt den Sinus des Winkels $\beta$ abkürzend auch so:

$\sin(\beta) = \dfrac{b}{c}$

Trigonometrie – Cosinus

Der Cosinus eines Winkels ist der Quotient aus Ankathete und Hypotenuse, also:

$\text{Cosinus}(\beta) = \dfrac{\text{Ankathete (von }\beta\text{)}}{\text{Hypotenuse}}$

Das können wir in Kurzform auch so schreiben:

$\cos(\beta) = \dfrac{a}{c}$

Trigonometrie – Tangens

Aber auch der Quotient aus den beiden Katheten ist eine trigonometrische Funktion, nämlich der Tangens:

$\text{Tangens}(\beta) = \dfrac{\text{Gegenkathete (von }\beta\text{)}}{\text{Ankathete (von }\beta\text{)}}$

Oder kurz:

$ \tan(\beta) = \dfrac{b}{a} $

Kennst du das?
Hast du auch schon einmal den Schatten eines Baumes beobachtet und dich gefragt, wie hoch der Baum ist? Mit Hilfe von Trigonometrie kannst du die Höhe des Baumes berechnen, indem du die Länge des Schattens und den Winkel zur Baumspitze aus der Sicht der Schattenspitze misst. So kannst du die Höhe des Baumes ganz ohne Leiter berechnen. Spannend, oder?

Trigonometrie – Beispiel

In einem gegebenen rechtwinkligen Dreieck mit $\gamma = 90^\circ$ sei der Winkel $\beta = 37^\circ$.
Damit könenn wir den fehlenden Winkel $\alpha$ ausrechnen:

$\alpha = 180^\circ - \beta - \gamma = 180^\circ - 37^\circ -90^\circ = 53^\circ$

In jedem Dreieck mit diesen Winkelgrößen ist das Verhältnis der Seiten $b$ und $c$ gleich. Dieses Seitenverhältnis ist der Sinus des Winkels $37^\circ$. Du kannst das Seitenverhältnis bestimmen, indem du ein solches Dreieck zeichnest und die Seiten ausmisst.

Du kannst den Sinus des Winkels $\beta$ als Seitenverhältnis der gemessenen Gegenkathete und Hypotenuse darstellen. Mit einem Taschenrechner kannst du den Sinus aber auch direkt aus $\beta = 37^\circ$ berechnen. Das Ergebnis ist:

$\sin(37^\circ) \approx 0{,}6$

Trigonometrie – Übungen

An welcher Art von Dreiecken findet die Trigonometrie ihre Anwendung?
Wie heißt das Verhältnis zwischen Ankathete und Hypotenuse?
Die Gegenkathete eines rechtwinkligen Dreiecks ist $\pu{3 cm}$ lang. Die Länge der Hypotenuse ist $\pu{5 cm}$. Berechne den Sinus des Winkels Beta.

Ausblick – das lernst du nach Trigonometrie – Einführung

Als Nächstes solltest du den Sinus sowie Cosinus und Tangens genauer betrachten. Mach dich bereit, trigonometrische Berechnungen am rechtwinkligen Dreieck durchzuführen und die praktischen Anwendungen der Trigonometrie kennenzulernen. Erweitere dein trigonometrisches Verständnis!

Zusammenfassung der Trigonometrie

  • Die Trigonometrie ist ein Teilgebiet der Geometrie.
  • In der Trigonometrie geht es um Seitenverhältnisse in rechtwinkligen Dreiecken.
  • Mit den Formeln der Trigonometrie können Seitenlängen und Winkelgrößen berechnet werden:
Sinus Cosinus Tangens
$\sin(\beta) = \dfrac{b}{c}$ $\cos(\beta) = \dfrac{a}{c}$ $\tan(\beta) = \dfrac{b}{a}$
  • $a\text{~:~\,~Ankathete (von }\beta\text{)}$
  • $b\text{~:~\,~Gegenkathete (von }\beta\text{)}$
  • $c\text{~:~\,~Hypotenuse}$

Häufig gestellte Fragen zum Thema Trigonometrie

Was gehört alles zur Trigonometrie?
Was kann man mit der Trigonometrie berechnen?
Was ist eine trigonometrische Funktion?
Wie lautet die Formel für den Tangens?
Was genau ist der Sinus?
Was ist der Unterschied zwischen Sinus und Cosinus?
Welche Einheit wird normalerweise zum Messen von Winkeln verwendet?
Teste dein Wissen zum Thema Trigonometrie!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Trigonometrie – Einführung

Rechtwinklige Dreiecke, Hypotenuse, Katheten, Sinus, Cosinus und Tangens. Wofür braucht man überhaupt den ganzen Kram? In der Astronomie. Wow. Akustik und Optik, das scheint ja schon wichtig für Naturwissenschaften zu sein. Was, GPS funktioniert auf der Grundlage von Trigonometrie? Na, dann scheint sich der Blick auf eine kurze „Einführung in die Trigonometrie“ ja doch nochmal zu lohnen. Fangen wir mit dem Begriff selbst an: Was bedeutet Trigonometrie eigentlich? Das Wort setzt sich aus zwei Bezeichnungen zusammen. „Trigon“ kommt aus dem Griechischen und bedeutet Dreieck. Die Wortendung „metrie“ deutet zusätzlich darauf hin, dass etwas gemessen werden soll. Es geht also um die Messung von Dreiecken. Was genau können wir an diesen denn überhaupt messen? Nun, neben den drei Seitenlängen, können wir auch die Größe der drei Innenwinkel bestimmen. Es gibt also Sechs grundlegende Größen im Dreieck, die wir messen können. Haben wir einige davon gegeben, hilft uns die Trigonometrie dabei, die Größe der übrigen herauszufinden. Und es wird sogar noch etwas einfacher: Die Trigonometrie betrachtet zunächst nur eine spezielle Art von Dreiecken, nämlich nur die, die einen rechten Winkel besitzen. Rechtwinklige Dreiecke? Kennen wir da nicht schon so eine Formel zu den Seitenlängen? Ach ja, da war was: Der Satz des Pythagoras! „a Quadrat plus b Quadrat gleich c Quadrat“. Mit Hilfe dieses Satzes können wir eine unbekannte Seitenlänge in einem rechtwinkligen Dreieck berechnen, wenn wir die beiden anderen Seitenlängen kennen. Bei den Winkeln hilft uns der Winkelsummensatz. Dieser besagt, dass die drei Winkel in einem Dreieck zusammen immer hundertachtzig Grad betragen. Kennen wir zwei Winkel, können wir so den dritten ganz einfach berechnen. Doch welche Beziehung besteht zwischen Seitenlängen und Winkelgrößen? Hier kommt die Trigonometrie ins Spiel, quasi als eine Art „Dolmetscher“. Sie ermöglicht uns, von Seitenlängen auf Winkelgrößen zu schließen und andersherum. Dafür wählen wir den Winkel Alpha im Dreieck als Ausgangspunkt. Außerdem haben wir bereits den rechten Winkel gegeben. Auf dieser Grundlage können wir den Dreiecksseiten nun spezielle Bezeichnungen geben: Die Seite, die dem rechten Winkel gegenüberliegt, nennen wir im Allgemeinen Hypotenuse. Die beiden Seiten, die den rechten Winkel einschließen, heißen Katheten. Die Kathete, die auch unseren Winkel Alpha einschließt, nennen wir Ankathete, da sie dem Winkel anliegt. Die andere Kathete nennen wir Gegenkathete. Sie liegt dem Winkel Alpha gegenüber. Mit Hilfe dieser Bezeichnungen können wir jetzt die trigonometrischen Funktionen definieren: Die erste Funktion dieser Art, die wir uns anschauen ist der Sinus. Der Sinus von Alpha ist das Verhältnis von Gegenkathete zu Hypotenuse. Bei unserem Dreieck entspricht das der Seitenlänge von a geteilt durch die Seitenlänge von b. Den Cosinus des Winkels Alpha erhalten wir, wenn wir Ankathete durch Hypotenuse teilen. Sprich b geteilt durch c. Der Tangens von Alpha ist definiert als Gegenkathete durch Ankathete.
Das entspricht in unserem Fall a geteilt durch b. Die trigonometrischen Funktionen definieren also die Seitenverhältnisse im rechtwinkligen Dreieck. Diese werden so mit den Winkelgrößen verknüpft. Um mit Sinus, Cosinus und Tangens im rechtwinkligen Dreieck rechnen zu können, brauchen wir neben dem rechten Winkel lediglich einen weiteren Winkel und eine Seitenlänge. Die übrigen Seitenlängen zu ermitteln ist dann kein Problem mehr. Mit Hilfe der trigonometrischen Funktionen können wir jedoch noch viel mehr erreichen, als bloß die Seitenlängen und Winkelgrößen in rechtwinkligen Dreiecken zu bestimmen. Wie genau das Ganze funktioniert, klären wir aber ein andermal. Die Mathestunde ist für heute erstmal beendet. Aha. Da wurde ja auch schon ein neues Anwendungsgebiet für die Trigonometrie gefunden. Man kann nie wissen wozu Mathe noch so gut sein kann.

0 Kommentare

Trigonometrie – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Trigonometrie – Einführung kannst du es wiederholen und üben.
  • Vervollständige die Gleichungen.

    Tipps

    Lösung

    Der Sinus eines Winkels ist das Längenverhältnis von Gegenkathete zu Hypotenuse:
    $~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}$
    Da die Gegenkathete mit $a$ und die Hypotenuse mit $c$ beschriftet ist, gilt:
    $~\sin(\alpha)=\frac{a}{c}$

    Der Kosinus eines Winkels ist das Längenverhältnis von Ankathete zu Hypotenuse:
    $~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}$
    Da die Ankathete mit $b$ und die Hypotenuse mit $c$ beschriftet ist, gilt:
    $~\cos(\alpha)=\frac{b}{c}$

    Der Tangens eines Winkels ist das Längenverhältnis von Gegenkathete zu Ankathete:
    $~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}$
    Da die Gegenkathete mit $a$ und die Ankathete mit $b$ beschriftet ist, gilt:
    $~\tan(\alpha)=\frac{a}{b}$

  • Gib an, welche mathematischen Größen durch die jeweilige Formel verknüpft werden.

    Tipps

    Der Sinus von $\alpha$ ist als das Längenverhältnis von Gegenkathete zu Hypotenuse definiert.

    Die Hypotenuse ist die längste Seite im Dreieck.

    Mithilfe des Satzes des Pythagoras kann man mit zwei gegebenen Seiten im rechtwinkligen Dreieck die dritte Seite ermitteln.

    Lösung

    Der Winkelsummensatz gilt in allen Dreiecken und besagt, dass die Summe aller Innenwinkel $180^\circ$ beträgt:
    $\alpha + \beta + \gamma = 180^\circ$
    Es werden also die Größen $\alpha$, $\beta$ und $\gamma$ verknüpft.

    Der Satz des Pythagoras gilt nur im rechtwinkligen Dreieck. Er besagt, dass die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat ist:
    $a^2+b^2=c^2$
    Es werden also die Größen $a$, $b$ und $c$ verknüpft.

    Der Sinus eines Winkels gibt das Längenverhältnis von Gegenkathete zur Hypotenuse an:
    $~\sin(\alpha)=\frac{a}{c}$
    Es werden also die Größen $\alpha$, $a$ und $c$ verknüpft.

    Der Kosinus eines Winkels gibt das Längenverhältnis von Ankathete zur Hypotenuse an:
    $~\cos(\alpha)=\frac{b}{c}$
    Es werden also die Größen $\alpha$, $b$ und $c$ verknüpft.

    Der Tangens eines Winkels gibt das Längenverhältnis von Gegenkathete zur Ankathete an:
    $~\tan(\alpha)=\frac{a}{b}$
    Es werden also die Größen $\alpha$, $a$ und $b$ verknüpft.

  • Entscheide, welche der Aussagen richtig sind.

    Tipps

    Der Satz des Pythagoras lautet für das hier abgebildete Dreieck mit $\gamma=90^\circ$ in Kurzform:

    $a^2+b^2=c^2$

    Die beiden Katheten schließen den rechten Winkel ein.

    Dem rechten Winkel liegt immer die längste Seite des Dreiecks gegenüber.

    Lösung

    Die folgenden Aussagen sind richtig:

    • Der Satz des Pythagoras verknüpft die Seitenlängen in einem rechtwinkligen Dreieck.
    Diese Aussage stimmt, da der Satz des Pythagoras $a^2+b^2=c^2$ lautet, wobei $a$ und $b$ die beiden Katheten im rechtwinkligen Dreieck sind und $c$ die Hypotenuse ist.
    • Sinus, Kosinus und Tangens sind Längenverhältnisse.
    Diese Aussage ist korrekt, da der Sinus als $~\sin(\alpha)=\frac{a}{c}$ definiert ist. Dabei ist $a$ die Länge der Gegenkathete und $c$ die Länge der Hypotenuse. Somit ist $\frac{a}{c}$ ein Längenverhältnis. Gleiches gilt für den Kosinus $\cos(\alpha)=\frac{b}{c}$ und den Tangens $\tan(\alpha)=\frac{a}{b}$, wobei $b$ die Länge der Ankathete ist.

    Die folgenden Aussagen sind falsch:

    • Der Winkelsummensatz gilt nur in rechtwinkligen Dreiecken.
    Das ist falsch, da der Winkelsummensatz $\alpha + \beta + \gamma = 180^\circ$ in allen Dreiecken gilt.
    • Die Seite, die dem rechten Winkel gegenüberliegt, heißt Gegenkathete.
    Das ist auch falsch, da die Seite, die dem rechten Winkel gegenüberliegt, die Hypotenuse ist. Die Gegenkathete hingegen ist die Seite, die dem betrachteten Winkel gegenüberliegt.
  • Entscheide, ob Sinus, Kosinus und Tangens direkt angewendet werden können.

    Tipps

    Die Hypotenuse liegt immer dem rechten Winkel gegenüber.

    Lösung

    Sinus, Kosinus und Tangens stellen Längenverhältnisse im rechtwinkligen Dreieck dar:

    • $~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}$
    • $~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}$
    • $~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}$

    Die beiden roten Dreiecke sind rechtwinklig, daher können wir Sinus, Kosinus und Tangens hier anwenden.

    Das gelbe Dreieck hat drei gleich lange Seiten. Wir nennen es daher gleichseitig. Im gleichseitigen Dreieck sind auch alle Innenwinkel gleich groß, nämlich $60^\circ$. Es ist somit nicht rechtwinklig. Wir können Sinus, Kosinus und Tangens hier nicht direkt anwenden. Nur durch das Einzeichnen von Hilfslinien könnten wir rechtwinklige Dreiecke erzeugen.

    Gleiches gilt für das grüne Rechteck: Da dies kein rechtwinkliges Dreieck ist, können wir Sinus, Kosinus und Tangens nicht direkt anwenden. Hier könnten wir jedoch ebenfalls Hilfslinien einzeichnen, um rechtwinklige Dreiecke zu erzeugen.

  • Bestimme Hypotenuse, Gegenkathete und Ankathete.

    Tipps

    Die Hypotenuse ist immer die längste Seite im Dreieck und liegt dem rechten Winkel gegenüber.

    Seite $a$ liegt gegenüber von Winkel $\alpha$: Es handelt sich um eine Kathete.

    Seite $b$ liegt an dem Winkel $\alpha$.

    Lösung

    In einem rechtwinkligen Dreieck gelten folgende Bezeichnungen:

    Die Hypotenuse liegt dem rechten Winkel gegenüber. Sie ist auch immer die längste Seite im Dreieck.

    Die beiden Seiten, die den rechten Winkel einschließen, heißen Katheten.
    Genauer nennt man die Seite, die dem betrachteten Winkel gegenüberliegt, Gegenkathete. Die Seite, die dem betrachteten Winkel anliegt, heißt Ankathete.

  • Stelle die Gleichung für Sinus, Kosinus und Tangens in dem rechtwinkligen Dreieck auf.

    Tipps

    Die Hypotenuse ist immer die längste Seite im Dreieck. Welche der anderen beiden Seiten die An- und Gegenkathete sind, hängt davon ab, welchen Winkel wir betrachten.

    Der Sinus eines Winkels ist definiert als Gegenkathete geteilt durch Hypotenuse.

    • $~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}$
    • $~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}$
    • $~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}$
    Lösung

    Betrachten wir in dem gegebenen Dreieck den Winkel $\alpha$, so ist die Seite $k$ die Gegenkathete, die Seite $j$ die Ankathete und die Seite $i$ die Hypotenuse.
    Wir betrachten nun die Definition von Sinus, Kosinus und Tangens und setzen entsprechend ein:

    $~\sin(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}=\frac{k}{i}$

    $~\cos(\alpha)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}=\frac{j}{i}$

    $~\tan(\alpha)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}=\frac{k}{j}$

    Betrachten wir in dem gegebenen Dreieck den Winkel $\beta$, so ist die Seite $j$ die Gegenkathete, die Seite $k$ die Ankathete und die Seite $i$ die Hypotenuse.
    Wir betrachten wieder die Definition von Sinus, Kosinus und Tangens und setzen entsprechend ein:

    $~\sin(\beta)=\frac{~\text{Gegenkathete}}{~\text{Hypotenuse}}=\frac{j}{i}$

    $~\cos(\beta)=\frac{~\text{Ankathete}}{~\text{Hypotenuse}}=\frac{k}{i}$

    $~\tan(\beta)=\frac{~\text{Gegenkathete}}{~\text{Ankathete}}=\frac{j}{k}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.988

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.248

Lernvideos

35.793

Übungen

32.552

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden