Cosinus und Tangens – Definition

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Cosinus und Tangens – Definition
Nach dem Schauen dieses Videos wirst du in der Lage sein, mit Cosinus und Tangens zu rechnen.
Zunächst lernst du, wie Cosinus und Tangens definiert sind. Anschließend siehst du an zwei Beispielen, wie du mit Cosinus und Tangens rechnen kannst.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie rechtwinkliges Dreieck, Sinus, Cosinus, Tangens, Hypotenuse, Ankathete und Gegenkathete.
Bevor du dieses Video schaust, solltest du bereits wissen, wie die Seitenbezeichnungen im rechtwinkligen Dreieck lauten.
Nach diesem Video wirst du darauf vorbereitet sein, Übungsaufgaben mit Sinus, Cosinus und Tangens zu rechnen.
Transkript Cosinus und Tangens – Definition
Welch herzerweicheneder Anblick. Diese holde Maid möchte wohl sehnlichst aus ihrer einsamen Turmkammer errettet werden! Doch wie kommt Prinz Sekans nur zu ihr hinauf? Er hat eine geniale Idee! Die Schönheit kann sich einen Zopf in Höhe des Turmfensters wachsen lassen. Mit dem kann er ganz einfach nach oben gelangen. Doch wie kann Prinz Sekans die Höhe des Turmfensters berechnen? Zum Glück hat er in Mathe aufgepasst. Denn dabei hilft ihm die Trigonometrie, genauer gesagt die Seitenverhältnisse „Cosinus und Tangens“. Wenn das Wort Trigonometrie fällt, geht es meistens in irgendeiner Form um rechtwinklige Dreiecke. Am Besten wiederholen wir dazu kurz die Seitenbezeichnungen, ausgehend von dem Winkel Alpha. Die Seite, die dem rechten Winkel gegenüberliegt, ist die Hypotenuse. Die Seite, die dem betrachteten Winkel Alpha gegenüberliegt, ist die Gegenkathete. Und die dritte Seite, die an dem Winkel Alpha anliegt, ist die Ankathete. Den Sinus kennen wir bereits. Er ist definiert durch das Verhältnis der Seitenlängen von Gegenkathete zu Hypotenuse. Doch es gibt weitere Seitenverhältnisse im rechtwinkligen Dreieck, die unsere Aufmerksamkeit verdient haben. Zum einen gibt es da den Cosinus. Der Cosinus ist gleich Ankathete durch Hypotenuse. Hier steht anstelle der Gegenkathete die Ankathete im Zähler. Der dritte im Bunde ist der Tangens. Dieser ist durch das Verhältnis von Gegenkathete zu Ankathete definiert. Wir können uns also merken: Genauso wie beim Sinus, handelt es sich bei Cosinus und Tangens um Seitenverhältnisse im rechtwinkligen Dreieck. Daher können wir auch mit Cosinus und Tangens so rechnen, wie wir es bereits vom Sinus kennen. Dazu ein Beispiel. Gegeben ist dieses rechtwinklige Dreieck. Winkel Alpha ist hier gleich sechzig Grad. Und die Länge der Hypotenuse c beträgt zwölf Zentimeter. Wir wollen die Länge der Ankathete b berechnen. Dafür können wir den Cosinus von Alpha verwenden. Denn dieser ist ja gleich Ankathete durch Hypotenuse. Wir müssen nur noch die gegebenen Werte in unsere Formel einsetzen, und anschließend nach b umstellen. Den Cosinus können wir mit dem Taschenrechner ausrechnen. Der Cosinus von sechzig Grad ist gleich 0,5! Das können wir uns ja schonmal merken. Die gesuchte Länge der Ankathete ist also gleich sechs Zentimeter. Zurück zu Prinz Sekans und seinem Turmproblem. Er befindet sich in einem Abstand von zehn Metern zum Turm. Zwischen seinem Standpunkt und dem Turmfenster haben wir außerdem einen fünfundvierzig-Grad-Winkel. Der Prinz muss nun herausfinden wie hoch das Turmfenster liegt, also wie lang die „Seite h“ ist. Denn dann lautet das Motto: „Rapunzel lass dein H herunter“. Und dafür sollte man natürlich wissen, wie lang das H denn sein muss. Doch wie kann Prinz Sekans das herausfinden? Kannst du ihm helfen? Kleiner Tipp: Der Turm ist natürlich in einem rechten Winkel gebaut worden. Hier siehst du außerdem nochmal die Formeln für Cosinus und Tangens. Pausiere das Video kurz! Dann erfährst du die Lösung. Um die Höhe des Turmfensters zu berechnen, müssen wir überlegen welche Größe wir suchen, und welche Größen wir gegeben haben. Da unser betrachteter Winkel in der unteren linken Ecke liegt, ist das gesuchte h die Länge der Gegenkathete. Die Distanz von Prinz Sekans zum Turm entspricht der Ankathete. Wenn sowohl Gegen- als auch Ankathete im Spiel sind, können wir den Tangens nutzen. Wir setzen die gegebenen Werte ein, stellen um, und können so die gesuchte Länge von h ermitteln. Der Tangens von fünfundvierzig Grad ist genau gleich eins. Daher ist die Gegenkathete genauso lang wie die Ankathete! Das Turmfenster ist also zehn Meter hoch! Ein zehn Meter langer Zopf? Das kann dauern. Da muss Prinz Sekans wohl später nochmal vorbeikommen. Während der Prinz die Evakuierung von Rapunzel vorbereitet, fassen wir kurz zusammen. Cosinus und Tangens geben Seitenverhältnisse im rechtwinkligen Dreieck an. Der Cosinus ist durch das Verhältnis von Ankathete zu Hypotenuse, der Tangens durch das Verhältnis von Gegenkathete zu Ankathete definiert. Beide können wir – genauso wie den Sinus – dafür nutzen, unbekannte Seitenlängen oder Winkelgrößen zu berechnen. So hat es auch Prinz Sekans gemacht, um seine Rettungsaktion zu planen. Und der wird nun auch zur Tat schreiten. Oh, Rapunzel konnte sich wohl sehr gut selber helfen.
Cosinus und Tangens – Definition Übung
9.209
sofaheld-Level
6.600
vorgefertigte
Vokabeln
7.646
Lernvideos
35.593
Übungen
32.336
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Schriftliche Division – Übungen
- Meter
sehr gutes Video danke:)