Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Cosinus und Tangens – Definition

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 46 Bewertungen
Die Autor*innen
Avatar
Team Digital
Cosinus und Tangens – Definition
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Cosinus und Tangens – Definition

Nach dem Schauen dieses Videos wirst du in der Lage sein, mit Cosinus und Tangens zu rechnen.

Zunächst lernst du, wie Cosinus und Tangens definiert sind. Anschließend siehst du an zwei Beispielen, wie du mit Cosinus und Tangens rechnen kannst.

Tangens Cosinus

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie rechtwinkliges Dreieck, Sinus, Cosinus, Tangens, Hypotenuse, Ankathete und Gegenkathete.

Bevor du dieses Video schaust, solltest du bereits wissen, wie die Seitenbezeichnungen im rechtwinkligen Dreieck lauten.

Nach diesem Video wirst du darauf vorbereitet sein, Übungsaufgaben mit Sinus, Cosinus und Tangens zu rechnen.

Transkript Cosinus und Tangens – Definition

Welch herzerweicheneder Anblick. Diese holde Maid möchte wohl sehnlichst aus ihrer einsamen Turmkammer errettet werden! Doch wie kommt Prinz Sekans nur zu ihr hinauf? Er hat eine geniale Idee! Die Schönheit kann sich einen Zopf in Höhe des Turmfensters wachsen lassen. Mit dem kann er ganz einfach nach oben gelangen. Doch wie kann Prinz Sekans die Höhe des Turmfensters berechnen? Zum Glück hat er in Mathe aufgepasst. Denn dabei hilft ihm die Trigonometrie, genauer gesagt die Seitenverhältnisse „Cosinus und Tangens“. Wenn das Wort Trigonometrie fällt, geht es meistens in irgendeiner Form um rechtwinklige Dreiecke. Am Besten wiederholen wir dazu kurz die Seitenbezeichnungen, ausgehend von dem Winkel Alpha. Die Seite, die dem rechten Winkel gegenüberliegt, ist die Hypotenuse. Die Seite, die dem betrachteten Winkel Alpha gegenüberliegt, ist die Gegenkathete. Und die dritte Seite, die an dem Winkel Alpha anliegt, ist die Ankathete. Den Sinus kennen wir bereits. Er ist definiert durch das Verhältnis der Seitenlängen von Gegenkathete zu Hypotenuse. Doch es gibt weitere Seitenverhältnisse im rechtwinkligen Dreieck, die unsere Aufmerksamkeit verdient haben. Zum einen gibt es da den Cosinus. Der Cosinus ist gleich Ankathete durch Hypotenuse. Hier steht anstelle der Gegenkathete die Ankathete im Zähler. Der dritte im Bunde ist der Tangens. Dieser ist durch das Verhältnis von Gegenkathete zu Ankathete definiert. Wir können uns also merken: Genauso wie beim Sinus, handelt es sich bei Cosinus und Tangens um Seitenverhältnisse im rechtwinkligen Dreieck. Daher können wir auch mit Cosinus und Tangens so rechnen, wie wir es bereits vom Sinus kennen. Dazu ein Beispiel. Gegeben ist dieses rechtwinklige Dreieck. Winkel Alpha ist hier gleich sechzig Grad. Und die Länge der Hypotenuse c beträgt zwölf Zentimeter. Wir wollen die Länge der Ankathete b berechnen. Dafür können wir den Cosinus von Alpha verwenden. Denn dieser ist ja gleich Ankathete durch Hypotenuse. Wir müssen nur noch die gegebenen Werte in unsere Formel einsetzen, und anschließend nach b umstellen. Den Cosinus können wir mit dem Taschenrechner ausrechnen. Der Cosinus von sechzig Grad ist gleich 0,5! Das können wir uns ja schonmal merken. Die gesuchte Länge der Ankathete ist also gleich sechs Zentimeter. Zurück zu Prinz Sekans und seinem Turmproblem. Er befindet sich in einem Abstand von zehn Metern zum Turm. Zwischen seinem Standpunkt und dem Turmfenster haben wir außerdem einen fünfundvierzig-Grad-Winkel. Der Prinz muss nun herausfinden wie hoch das Turmfenster liegt, also wie lang die „Seite h“ ist. Denn dann lautet das Motto: „Rapunzel lass dein H herunter“. Und dafür sollte man natürlich wissen, wie lang das H denn sein muss. Doch wie kann Prinz Sekans das herausfinden? Kannst du ihm helfen? Kleiner Tipp: Der Turm ist natürlich in einem rechten Winkel gebaut worden. Hier siehst du außerdem nochmal die Formeln für Cosinus und Tangens. Pausiere das Video kurz! Dann erfährst du die Lösung. Um die Höhe des Turmfensters zu berechnen, müssen wir überlegen welche Größe wir suchen, und welche Größen wir gegeben haben. Da unser betrachteter Winkel in der unteren linken Ecke liegt, ist das gesuchte h die Länge der Gegenkathete. Die Distanz von Prinz Sekans zum Turm entspricht der Ankathete. Wenn sowohl Gegen- als auch Ankathete im Spiel sind, können wir den Tangens nutzen. Wir setzen die gegebenen Werte ein, stellen um, und können so die gesuchte Länge von h ermitteln. Der Tangens von fünfundvierzig Grad ist genau gleich eins. Daher ist die Gegenkathete genauso lang wie die Ankathete! Das Turmfenster ist also zehn Meter hoch! Ein zehn Meter langer Zopf? Das kann dauern. Da muss Prinz Sekans wohl später nochmal vorbeikommen. Während der Prinz die Evakuierung von Rapunzel vorbereitet, fassen wir kurz zusammen. Cosinus und Tangens geben Seitenverhältnisse im rechtwinkligen Dreieck an. Der Cosinus ist durch das Verhältnis von Ankathete zu Hypotenuse, der Tangens durch das Verhältnis von Gegenkathete zu Ankathete definiert. Beide können wir – genauso wie den Sinus – dafür nutzen, unbekannte Seitenlängen oder Winkelgrößen zu berechnen. So hat es auch Prinz Sekans gemacht, um seine Rettungsaktion zu planen. Und der wird nun auch zur Tat schreiten. Oh, Rapunzel konnte sich wohl sehr gut selber helfen.

1 Kommentar
  1. sehr gutes Video danke:)

    Von Luca, vor etwa 2 Jahren

Cosinus und Tangens – Definition Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Cosinus und Tangens – Definition kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.209

sofaheld-Level

6.600

vorgefertigte
Vokabeln

7.646

Lernvideos

35.593

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden