Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die Raute

Eine Raute ist ein Viereck mit vier gleich langen Seiten. Die gegenüberliegenden Seiten sind parallel, die Diagonalen stehen senkrecht aufeinander und sind Symmetrieachsen. Gegenüberliegende Winkel sind gleich groß und benachbarte Winkel ergeben zusammen 180°. Aber ist jede Raute ein Rechteck? Erfahre mehr im folgenden Video!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Raute Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.0 / 161 Bewertungen
Die Autor*innen
Avatar
Team Digital
Die Raute
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Beschreibung zum Video Die Raute

Kennst du schon die Raute? Die Raute ist eine geometrische Form mit ganz bestimmten Eigenschaften. Welche Eigenschaften das sind, erfährst du in diesem Video. Außerdem lernst du, eine Raute zu erkennen und selbst zu zeichnen. Im Anschluss an das Video kannst du gleich weiter üben. Nutze dazu die interaktiven Übungsaufgaben auf dieser Seite!

Grundlagen zum Thema Die Raute

Raute – Definition

Die Raute, manchmal auch Rhombus genannt, ist ein Viereck mit einer besonderen Geometrie. Sie hat nämlich vier Seiten, die alle gleich lang sind.

Ein Viereck mit viel gleich langen Seiten heißt Raute oder Rhombus.

Raute – Beschriftung

Wenn wir eine Raute aufmalen, bezeichnen wir ihre Eckpunkte gegen den Unhrzeigersinn mit den Buchstaben AA, BB, CC und DD, wie bei jedem Viereck.
Die Seiten können wir alle gleich beschriften, weil sie ja alle gleich lang sind. Wir nehmen dazu ein kleines aa.
Für die Winkel benutzen wir Buchstaben aus dem griechischen Alphabet. Der Winkel beim Punkt AA heißt α\alpha, der Winkel bei BB heißt β\beta, der Winkel bei CC heißt γ\gamma und der Winkel bei DD heißt δ\delta. Insgesamt sieht unsere Zeichnung also so aus:

Raute mit Beschriftung der Ecken, Seiten und Winkel

Wusstest du schon?
Die Raute ist in der Flagge von Bayern zu sehen. Die weiß‑blauen Rauten sind ein Symbol für das Bundesland und repräsentieren dessen Tradition und Geschichte. Jedes Mal, wenn du die bayerische Flagge siehst, kannst du an die besondere Geometrie denken, die du entdeckt hast!

Raute – Eigenschaften

Die Raute steht weit oben im Haus der Vierecke, da sie einige besondere Eigenschaften hat. Jede Raute ist auch immer ein Drachenviereck, ein Parallelogramm und ein (gleichschenkliges) Trapez.
Wir können unsere Raute auch zusammendrücken. Solange sich die Länge der Seiten nicht ändert, und gegenüberliegende Seiten parallel bleiben, ist es immer noch eine Raute. Das kann zum Beispiel so aussehen:

Spezialfall: Jede Raute ist ein Quadrat

Jetzt sagst du vielleicht: Aber das ist doch ein Quadrat! Und du hast recht. Aber es ist auch eine Raute. Schauen wir noch einmal auf unsere Definition für die Raute:

  • Alle Seiten sind gleich lang.
  • Gegenüberliegende Seiten sind parallel.
  • Gegenüberliegende Winkel sind gleich groß.

Das Quadrat erfüllt alle Punkte. Jedes Quadrat ist also eine Raute, aber nicht jede Raute ein Quadrat.

Seiten der Raute

Wir wissen schon, dass alle Seiten gleich lang sind. Außerdem sind die Seiten, die sich gegenüberliegen, auch parallel. Die Seite  AB \overline{\text{ AB }} ist also parallel zu  CD \overline{\text{ CD }} und auch  BC \overline{\text{ BC }} ist parallel zu  DA \overline{\text{ DA }}.

Winkel der Raute

Wir können auch etwas über die Winkel sagen. Zwei angrenzende, also benachbarte Winkel, ergeben zusammen immer genau 180180^\circ. So ist beispielsweise α+β=180\alpha + \beta = 180^\circ. Und wenn man alle Winkel addiert, also α+β+γ+δ\alpha + \beta + \gamma + \delta, erhält man genau 360360^\circ. Außerdem sind zwei gegenüberliegende Winkel immer gleich groß. Also sind zum Beispiel α\alpha und γ\gamma gleich groß.

Diagonalen der Raute

Wenn wir vom Punkt AA zum Punkt CC eine Linie ziehen, erhalten wir eine Diagonale. Das Gleiche können wir zwischen den Punkten BB und DD machen. Diese Diagonalen halbieren die Winkel an den jeweiligen Eckpunkten.
Die beiden Diagonalen einer Raute stehen senkrecht aufeinander und halbieren sich gegenseitig. Daher sind die Diagonalen gleichzeitig Symmetrieachsen der Raute. Das bedeutet, dass wir die Raute entlang einer Diagonalen umklappen können. Die Hälften passen dann deckungsgleich aufeinander.

Raute Mathematik, Diagonale und Symmetrie

Fehleralarm
Viele Schülerinnen und Schüler denken, dass die Diagonalen in einer Raute gleich lang sind. Tatsächlich sind sie unterschiedlich lang und halbieren die Raute in vier gleichgroße Dreiecke.

Inkreis und Umkreis der Raute

Jede Raute hat einen Inkreis, der alle Seiten der Raute berührt. Sein Mittelpunkt ist der Schnittpunkt der Diagonalen.
Eine Raute hat nur dann einen Umkreis, wenn alle Winkel der Raute 9090^\circ sind. In diesem Fall ist die Raute auch gleichzeitig ein Quadrat.

Teste dein Wissen zum Thema Raute!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Raute zeichnen

Wenn du eine Raute zeichnen möchtest, beginnst du am besten mit den beiden Diagonalen (wenn du diese gegeben hast). Diese stehen senkrecht aufeinander und schneiden sich jeweils in der Mitte. Dann kannst du die Endpunkte der Diagonalen zu einer Raute verbinden.

Kennst du das?
Vielleicht hast du schon einmal die Fensterscheiben im Dach eines Bahnhofs oder eines Gewächshauses betrachtet. Sie sind oft in Form einer Raute konstruiert. Das liegt daran, dass Rauten eine stabile Struktur bilden und Lasten gut verteilen.
Sieh dir die genaue Anordnung an, um zu erkennen, wie geometrische Formen im Alltag eingesetzt werden, um Gebäude sicher und stabil zu machen.

Raute – Formeln

Um Größen einer Raute zu berechnen, kannst du spezielle Formeln nutzen.
Abhängig davon, welche Größen gegeben und gesucht sind, kannst du die Formeln auch nach der gesuchten Größe umstellen.

Umfang der Raute

Der Umfang UU einer Figur ist die Länge der Linie, von der die Figur umgeben ist. Der Umfang einer Raute setzt sich also aus den vier gleich langen Seiten zusammen. Es gilt:

URaute=a+a+a+a=4aU_{\text{Raute}} = a + a + a + a = 4 \cdot a

Beispiele:

Umfang der Raute – Rechner

In das folgende Feld kannst du selbst ein paar Werte für die Seitenlänge einsetzen, auf Berechnen klicken und sehen, welcher Umfang sich daraus ergibt.


Flächeninhalt der Raute

Der Flächeninhalt AA einer Figur ist die Fläche, die durch den Rand der Figur eingeschlossen wird.
Du kannst den Flächeninhalt einer Raute aus den Längen der Diagonalen ee und ff oder wie bei einem Parallelogramm über die Höhe hh berechnen. Es gilt:

ARaute=12ef=ahA_{\text{Raute}}= \dfrac{1}{2} \cdot e \cdot f = a \cdot h

Beispiele:

Flächeninhalt der Raute – Rechner

In die folgenden Felder kannst du selbst ein paar Werte für die Diagonalen einsetzen, auf Berechnen klicken und sehen, welcher Flächeninhalt sich daraus ergibt.

Ausblick – das lernst du nach Die Raute

Erweitere deine Kenntnis der Geometrie und lerne auch das Parallelogramm, das Trapez und das Drachenviereck kennen. Vertiefe dein Wissen und übe, verschiedene Vierecke zu identifizieren. Freue dich auf die Entdeckung weiterer mathematischer Formen!

Zusammenfassung der Raute

  • Eine Raute ist ein Viereck mit vier gleich langen Seiten.
  • Jede Raute ist auch eine Parallelogramm, ein Trapez und ein Drachenviereck.
  • Ein Quadrat ist eine spezielle Raute mit vier rechten Winkeln.
  • In einer Raute sind gegenüberliegende Seiten parallel und gegenüberliegende Winkel gleich groß.
  • Die Diagonalen einer Raute stehen senkrecht aufeinander und halbieren sich gegenseitig.

Im Bild siehst du noch einmal die Eigenschaften einer Raute zusammengefasst:

Raute Eigenschaften Zusammenfassung

Häufig gestellte Fragen zum Thema Raute

Transkript Die Raute

Die ägyptische Katzengöttin liegt hier begraben. Der Legende nach, kann sie wieder zum Leben erweckt werden, vervollständigt man ihren Sarkophag. Wir haben jedoch nur einen Versuch, die Teile richtig einzusetzen. Sonst werden wir in der Pyramide eingesperrt. Die fehlenden Stücke bilden zusammen eine ganz besondere Form, nämlich eine Raute. In diesem Video lernst du, was eine Raute ist, wie man sie beschriftet und welche besonderen Eigenschaften sie besitzt. Die Raute ist ein Viereck, bei dem alle 4 Seiten gleich lang sind. Manchmal wird die Raute auch 'Rhombus' genannt. Die Eckpunkte der Raute bezeichnen wir mit A, B, C und D. Da alle Seiten dieselbe Länge haben, können wir alle Seiten auch mit einem kleinen a beschriften. Dem griechischen Alphabet entsprechend bezeichnen wir den Winkel bei A mit Alpha, den Winkel bei B mit Beta und die anderen Winkel demnach mit Gamma und Delta. Da alle Seiten gleich lang sind, sind gegenüberliegende Seiten auch stets parallel zueinander. Die Seite AB ist also parallel zu CD. Somit ist auch BC parallel zu DA. Die Summe zweier angrenzender Winkel ist in der Raute immer 180 Grad. So ist beispielsweise Alpha plus Beta gleich 180 Grad. Insgesamt ergibt sich für die Winkelsumme aller 4 Winkel 360 Grad. In der Raute sind gegenüberliegende Winkel immer gleich groß. Alpha ist also gleich Gamma und Beta gleich Delta. Die Winkel werden durch Diagonalen halbiert. Eine Diagonale ist eine Strecke, die einen Eckpunkt mit dem gegenüberliegenden Eckpunkt verbindet. Diese stehen dabei stets senkrecht aufeinander. Gleichzeitig sind die Diagonalen auch die Symmetrieachsen der Raute. Wir können die Raute an dieser Diagonalen zusammenklappen und auch an dieser. In beiden Fällen sind die jeweiligen Hälften deckungsgleich zu den anderen Hälften. Somit entspricht die Raute auch der Definition eines Drachenvierecks, denn jedes Viereck, dessen Diagonale eine Symmetrieachse ist, ist ein Drachenviereck. Auch so haben wir weiterhin eine Raute. Alle Winkel sind nun jedoch rechte Winkel. Somit erfüllt diese Raute gleichzeitig die Eigenschaften eines Rechtecks, bei dem alle Winkel 90 Grad betragen. Da zusätzlich alle Seiten gleich lang sind, ist diese Form der Raute auch ein Quadrat. Grundsätzlich ist jedes Quadrat auch eine Raute, da es stets die Eigenschaft hat, dass alle Seiten gleich lang sind. Doch selbst wenn nicht alle Winkel 90 Grad betragen, ist die Raute auch ein Parallelogramm, denn gegenüberliegende Seiten sind jeweils parallel zueinander. Somit ist die Raute auch gleichzeitig ein Trapez, dessen Eigenschaft es ist, dass zwei gegenüberliegende Seiten parallel zueinander sind. Lass uns das noch einmal zusammenfassen. Die Raute ist ein Viereck mit vier gleich langen Seiten. Gegenüberliegende Seiten sind stets parallel zueinander und gegenüberliegende Winkel sind gleich groß. Die Diagonalen stehen senkrecht zueinander, halbieren sich gegenseitig und die Winkel an den Eckpunkten. Lass uns nun schauen, was passiert, wenn wir das letzte Stück einsetzen und die Raute vervollständigen. Oh, so hat sich die Katzengöttin wohl keiner vorgestellt.

23 Kommentare
  1. das ende XD

    Von Laila, vor etwa einem Monat
  2. Es hilft

    Von Melek, vor 8 Monaten
  3. Toll

    Von Josephine, vor 10 Monaten
  4. 🐈‍⬛

    Von Alia, vor 11 Monaten
  5. Gutes Video und gut erklärt ✌🏻Das Ende war sehr lustig 😂😁

    Von sofia , vor fast 2 Jahren
Mehr Kommentare

Die Raute Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die Raute kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.905

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.232

Lernvideos

35.784

Übungen

32.546

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden