- Mathematik
- Geometrie
- Vierecke und Vielecke
- Höhen in Vierecken
Höhen in Vierecken
Starte dafür schnell & einfach deine kostenlose Testphase
und verbessere mit Spaß deine Noten!
-
Lernvideos für alle Klassen und Fächer, die den Schulstoff kurz und prägnant erklären.
-
steigere dein Selbstvertrauen im Unterricht, indem du vor Tests und Schularbeiten mit unseren unterhaltsamen interaktiven Übungen lernst.
-
lerne unterwegs mit den Arbeitsblättern zum Ausdrucken – zusammen mit den dazugehörigen Videos ermöglichen diese Arbeitsblätter eine komplette Lerneinheit.
-
24h-Hilfe von Lehrer*innen, die immer helfen, wenn du es brauchst.
Testphase jederzeit online beenden
Sie sind Lehrkraft? Hier entlang!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Höhen In Vierecken Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Höhen in Vierecken
Nach dem Schauen dieses Videos wirst du in der Lage sein, die Höhen in einem Viereck zu finden.
Zunächst lernst du, wie du die Höhen in Quadraten und Rechtecken finden kannst. Anschließend lernst du, wie sich Höhen in Raute und Parallelogramm finden lassen. Abschließend lernst du, wie du die Höhe im Trapez finden kannst.
Lerne etwas über die Höhen in Vierecken.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Höhe, senkrechte Strecke, Quadrat, Rechteck, Parallelogramm, Raute und Trapez.
Bevor du dieses Video schaust, solltest du bereits wissen, welche Eigenschaften die verschiedenen Arten von Vierecken haben.
Nach diesem Video wirst du darauf vorbereitet sein, die Höhe für die Berechnung von Flächeninhalten zu verwenden.
Transkript Höhen in Vierecken
Jeden Tag fährt Gondelfahrer Vincenzo durch die Kanäle Venedigs, um Touristen die Schönheit der Stadt vom Wasser aus zu zeigen. Dabei fährt er unter einigen der mehr als 400 Brücken in Venedig hindurch. Vincenzo muss bei jeder dieser Brücken wissen wie hoch sie ist. Und da die Stützen der Brücken oft viereckig sind, muss Vincenzo sich mit den Höhen in Vierecken auskennen. In diesem Video werden wir die Höhen in Quadrat, Rechteck, Parallelogramm, Raute und Trapez betrachten. Die Höhe in diesen Vierecken ist der Abstand zwischen zwei parallelen Seiten. So wird aber auch die Strecke bezeichnet, die senkrecht zu diesen beiden Seiten liegt. Die Stützen dieser Brücke haben die Form eines Quadrats. Im Quadrat sind die gegenüberliegenden Seiten je parallel. Das heißt, wir können hier auch zwei Höhen finden. Da alle Seiten senkrecht aufeinander stehen, sind die Höhen des Quadrats durch die Seitenlängen direkt gegeben. Wir bezeichnen sie mit einem kleinen h. Da alle Seiten gleich lang sind, sind auch die jeweiligen Höhen gleich lang. Vincenzo fährt schon auf die nächste Brücke zu. Hier sehen wir Stützen in der Form eines Rechtecks. Beim Rechteck findet man die Höhen ähnlich wie beim Quadrat. Hier haben wir ebenfalls vier rechte Winkel. Da das Rechteck zusätzlich jeweils zwei gleich lange Seiten hat, die gegenüberliegen, haben wir eine Höhe hier und eine Höhe hier. Die Höhen sind also wieder durch die Längen der Seiten gegeben. Wir bezeichnen die Höhe zu a mit h_a und die Höhe zu b mit h_b. Schauen wir uns doch nun einmal Vierecke an, bei denen wir keine rechten Winkel haben. Diese Brücke hat Stützen in der Form eines Parallelogramms. Weil wir zwei Paare paralleler Seiten haben, die gegenüber liegen, können wir auch zwei Höhen finden. Da wir keine rechten Winkel haben, ist die Höhe diesmal keine der Seitenlängen. Wir müssen stattdessen eine senkrechte Strecke zwischen diesen beiden Parallelen als Höhe wählen. Wir können die Höhe beispielsweise so einzeichnen. Da wir hier einen rechten Winkel haben, ist auch hier ein rechter Winkel. Und da Parallelen immer den gleichen Abstand zueinander haben, kann die Höhe hier auch beliebig gewählt werden. Die Höhe dieser beiden Seiten können wir zum Beispiel so einzeichnen. Da die Raute ein spezielles Parallelogramm ist, können wir die Höhen hier auf die gleiche Art und Weise finden. Der einzige Unterschied ist, dass in der Raute alle Seiten gleich lang sind. Daher sind die Höhen der Raute ebenfalls gleich lang. Ein bisschen anders sieht das bei den Stützen dieser Brücke aus, die die Form eines Trapezes haben. Das Trapez ist ein Viereck, bei dem zwei Seiten parallel zueinander sind. Da hier nur zwei Seiten parallel zueinander sind, hat dieses Trapez nur eine Höhe. Wir haben hier einen rechten Winkel, aber diese Strecke trifft nicht die parallele Seite, sondern diese angrenzende Seite. Um hier die Höhe zu finden, können wir diese Seite einfach verlängern. Nun sehen wir, dass Teile der Höhe außerhalb des Trapezes liegen, aber die Höhe dennoch den Abstand der beiden parallelen Seiten angibt. Während Vincenzo weiter Touristen durch die Kanäle fährt, fassen wir zusammen. Die Höhe in den von uns betrachteten Vierecken ist der senkrechte Abstand zwischen zwei parallelen Seiten. Bei dem Quadrat und dem Rechteck ist die Höhe schon durch die jeweiligen Seiten gegeben. Bei dem Parallelogramm, der Raute und dem Trapez kann man die Höhen finden, indem man eine senkrechte Strecke zwischen den jeweiligen Parallelen einzeichnet. In manchen Fällen muss man eine der Seiten verlängern, um den Abstand einzeichnen zu können. Und Vincenzo kann seinen Job weiterhin genießen und weiß alles über die Höhen in Vierecken und die Höhen der Brücken. Doch… Pass auf! Da hat er wohl seine eigene Höhe nicht beachtet.
Höhen in Vierecken Übung
-
Benenne die Eigenschaften von Höhen in unterschiedlichen Vierecken.
TippsDie Höhe der Brücke ist der Abstand zwischen der Wasseroberfläche und der Unterkante der Brücke.
Nicht jedes Viereck hat zwei Höhen.
Die Höhe steht auf den zugehörigen Seiten senkrecht.
LösungDie Höhe in einem Viereck ist eine Strecke, die senkrecht auf zwei gegenüberliegenden Seiten des Vierecks steht. Da sie beide zu der Höhe senkrecht sind, müssen diese beiden Viereckseiten zueinander parallel sein. Nicht jedes Viereck hat zwei zueinander parallele Seiten, daher hat auch nicht jedes Viereck eine Höhe. Ein Viereck mit nur zwei zueinander parallelen Seiten nennt man Trapez.
Da sie auf zwei zueinander parallelen Seiten des Vierecks senkrecht steht, entspricht die Höhe dem Abstand dieser beiden Seiten. Die Höhe kann daher auch beliebig entlang der Seiten verschoben werden, solange die Orthogonalität zu den Seiten erhalten bleibt.
Hat ein Viereck zwei verschiedene Paare zueinander paralleler Seiten, so gibt es auch zwei verschiedene (und nicht parallele) Strecken, die jeweils zu zwei parallelen Seiten senkrecht stehen. Man spricht dann von einem Parallelogramm. Dieses hat zwei verschiedene Höhen. Andere Vierecke haben eine Höhe. Ein Viereck, das kein Trapez ist, hat keine Höhe.
Spezielle Vierecke sind Rechteck und Quadrat. In einem Quadrat sind alle Seiten und Höhen gleich lang. Bei einem Rechteck, das kein Quadrat ist, gibt es zwei verschieden lange Seiten, die man üblicherweise mit $a$ und $b$ bezeichnet. In einem solchen Rechteck ist die Höhe zu einer Seite die jeweils andere Seite. Die Höhe zur Seite $a$ bezeichnet man z. B. mit $h_a$, die Höhe zu der Seite $b$ mit $h_b$. Es gilt also:
$h_a =b$ und $h_b=a$.
Ein Trapez, das kein Parallelogramm ist, hat nur zwei zueinander parallele Seiten und daher nur eine Höhe. Bei dem Trapez im Bild sind die Seiten $b$ und $d$ zueinander parallel. Die Höhe ist der Abstand dieser beiden Seiten oder eine Strecke zwischen den beiden Seiten, die zu beiden orthogonal ist. Um die Höhe als Strecke einzeichnen zu können, darf man eine der Seiten des Vierecks verlängern. Zwischen den Seiten $a$ und $c$ bei dem Trapez im Bild gibt es keine Höhe, denn diese Seiten sind nicht parallel zueinander.
-
Zeige die Höhen in den Vierecken auf.
TippsJede Höhe in einem Viereck steht auf zwei Seiten senkrecht.
Um die Höhe in einem Trapez oder Parallelogramm einzuzeichnen, musst du eventuell eine Seite des Vierecks verlängern.
Eine Diagonale eines Parallelogramms oder eines nicht-verschränkten Trapezes kann keine Höhe sein.
LösungEine Höhe in einem Viereck ist der senkrechte Abstand zweier paralleler Seiten des Vierecks. Es handelt sich also um eine Strecke zwischen zwei Seiten des Vierecks, die zu beiden Seiten orthogonal ist.
In dem Bild siehst du ein Parallelogramm und ein asymmetrisches Trapez. Das Parallelogramm hat zwei Paare zueinander paralleler Seiten und daher auch zwei Höhen. Bei dem Trapez gibt es nur zwei Seiten, die zueinander parallel sind und daher nur eine Höhe.
Bei dem Parallelogramm siehst du zusätzlich zu den beiden Höhen eine Diagonale. Diese ist keine Höhe, denn sie steht auf keiner Seite des Parallelogramms senkrecht. Außerdem siehst du eine Strecke, die senkrecht auf einer verlängerten Seite steht, aber nicht bis zur anderen Seite reicht. Dies ist ebenfalls keine Höhe des Vierecks.
Bei dem Trapez siehst du zusätzlich zu der Höhe eine Diagonale. Diese ist keine Höhe, denn sie steht auf keiner Seite des Trapezes senkrecht. Außerdem siehst du eine Strecke, die auf der rechten Seite des Vierecks senkrecht steht, aber die linke Seite in einem spitzen bzw. stumpfen Winkel trifft. Diese ist ebenfalls keine Höhe, denn sie steht nicht auf zwei Seiten des Vierecks senkrecht.
-
Analysiere die Bilder.
TippsEine Höhe in einem Viereck schneidet nicht zwei nebeneinander liegende Seiten des Vierecks.
Jede Höhe in einem Viereck steht senkrecht auf zwei Seiten des Vierecks.
Die Länge der Höhe ist der Abstand der beiden parallelen Seiten des Vierecks, zu denen die Höhe senkrecht steht. Bei der Brücke sind diese parallelen Seiten die Ober- und Unterkante des Brückenpfeilers.
LösungDie Höhe in einem Viereck ist der senkrechte Abstand zweier paralleler Geraden. Man bezeichnet auch jede Strecke zwischen den beiden parallelen Seiten (bzw. ihren Verlängerungen), die auf beiden senkrecht steht, als Höhe des Vierecks. Wir gehen die Bilder einzeln durch:
Das Bild oben links zeigt ein Trapez. Die eingezeichnete Strecke ist orthogonal zu der unteren horizontalen Seite des Vierecks, erreicht aber die obere Seite oder deren Verlängerung nicht. Diese Strecke ist daher kürzer als der Abstand der parallelen Seiten und daher keine Höhe.
Das Viereck oben in der Mitte ist ein verschränktes Trapez. Hier ist die vertikale Seite zugleich eine Höhe, denn sie steht senkrecht auf den beiden parallelen Seiten. Die Länge dieser vertikalen Strecke ist genau der Abstand der beiden parallelen, horizontalen Seiten.
Oben rechts siehst du ein Rechteck. Bei einem Rechteck ist jede Seite auch eine Höhe. Hat das Rechteck (wie hier im Bild) verschieden lange Seiten, so ist jede Seite die Höhe der anderen Seite, d. h. $h_a = b$ und $h_b=a$.
Das Viereck in der zweiten Reihe links ist ein Parallelogramm. Jedes Parallelogramm hat zwei Paare zueinander paralleler Seiten und daher zwei verschiedene Höhen. In dem Bild ist die Höhe zu den horizontalen Seiten korrekt eingezeichnet. Die Höhe zu den schrägen Seiten fehlt. Eingezeichnet ist zusätzlich eine Parallele zu den horizontalen Seiten. Diese ist keine Höhe, denn sie steht nicht senkrecht auf den schrägen Seiten.
In der zweiten Reihe rechts siehst du ein weiteres Trapez. Dieses Trapez hat nur eine Höhe, da die beiden nicht horizontalen Seiten nicht parallel zueinander sind. Man kann die Höhe so einzeichnen, dass sie beide Seiten ohne Verlängerungen trifft. Aber die eingezeichnete Strecke von der oberen Seite senkrecht auf die Verlängerung der unteren Seite ist ebenfalls eine Höhe dieses Trapezes.
Unten siehst du ein weiteres Parallelogramm. In dem Bild sind die beiden Höhen korrekt eingezeichnet. Zusätzlich ist eine Strecke zwischen der oberen und der rechten Seite des Parallelogramms eingezeichnet. Dies ist keine Höhe, da die Strecke auf keiner der Seiten senkrecht steht.
-
Bestimme die Höhe.
TippsEin Viereck besitzt nur dann eine Höhe, wenn es mindestens zwei parallele Seiten hat.
Eine Höhe eines Vierecks steht senkrecht auf einer Seite, aber nicht jede Strecke, die senkrecht auf einer Seite eines Vierecks steht, ist eine Höhe des Vierecks.
LösungEin Viereck besitzt genau dann eine Höhe, wenn es zwei parallele Seiten hat. Ein Parallelogramm hat zwei Paare paralleler Seiten und daher zwei verschiedene Höhen. Jede Strecke zwischen den beiden parallelen Seiten, die auf diesen Seiten senkrecht steht, ist eine Höhe. Wir gehen die Vierecke im Einzelnen durch:
Viereck 1: Das Viereck mit den drei Strecken $a$, $b$ und $c$ ist ein Trapez und kein Parallelogramm. Die Strecke $a$ ist die einzige, die auf den parallelen Seiten senkrecht steht, daher ist $a$ die einzige Höhe dieses Vierecks.
Viereck 2: Das Viereck mit den Strecken $d$, $e$ und $f$ ist ein Drachenviereck ohne parallele Seiten. Es besitzt daher keine Höhe.
Viereck 3: Das Trapez mit den Strecken $g$, $h$ und $k$ ist kein Parallelogramm, es besitzt daher nur eine Höhe. Von den eingezeichneten Strecken ist einzig $k$ eine Höhe.
Viereck 4: Das Viereck mit den Strecken $l$, $m$ und $n$ ist ein Trapez, denn die rechte und linke Seite sind parallel zueinander. Von den eingezeichneten Strecken ist keine eine Höhe. Die Höhe dieses Vierecks steht senkrecht auf der rechten und linken Seite, verläuft also in etwa parallel zu der unteren Seite.
Viereck 5: Das Viereck mit den Strecken $p$, $q$ und $r$ ist kein Trapez und besitzt daher keine Höhe.
Viereck 6: Das Viereck mit den Strecken $u$, $v$ und $w$ ist ein Parallelogramm, bei dem zusätzlich alle Seiten gleich lang sind, also eine Raute. Es besitzt zwei Höhen. Von diesen ist nur eine eingezeichnet, nämlich die Strecke $w$.
Viereck 7: Das Viereck mit den Strecken $x$, $y$ und $z$ ist ebenfalls ein Parallelogramm, aber keine Raute. Von seinen beiden Höhen ist nur eine eingezeichnet, nämlich $y$. Diese Höhe ist zugleich eine Diagonale des Parallelogramms.
-
Vervollständige die Sätze.
TippsDie Diagonale eines Vierecks ist die Verbindungsstrecke zweier gegenüberliegender Eckpunkte.
Die Höhe im Viereck bestimmt Vincenzo, um den Abstand der Wasseroberfläche zur Unterkante der Brücke herauszufinden.
In einem Rechteck sind die Seiten jeweils auch Höhen.
LösungAls Höhe in einem Viereck bezeichnet man den senkrechten Abstand zweier zueinander paralleler Seiten des Vierecks oder eine Strecke zwischen zwei Seiten des Vierecks, die auf beiden senkrecht steht. Wo diese Strecke eingezeichnet wird, ist nicht festgelegt. Um die Höhe als Strecke einzeichnen zu können, darf man die Seiten eines Vierecks verlängern. Ein Viereck besitzt genau dann eine Höhe, wenn es ein Trapez ist und genau dann zwei Höhen, wenn es ein Parallelogramm ist.
Mit diesen Überlegungen findest du folgende korrekten Sätze:
- Die Höhe in einem Viereck ... ist der Abstand zweier paralleler Seiten.
- In einem Quadrat ... haben die beiden Höhen dieselbe Länge.
- In einem Rechteck, das kein Quadrat ist, ... gibt es zwei Höhen verschiedener Länge.
- In einem Trapez, das kein Parallelogramm ist, ... gibt es nur eine Höhe.
-
Analysiere die Sätze über die Höhe im Viereck.
TippsIn einem Viereck stehen genau dann die beiden Höhen aufeinander senkrecht, wenn es ein Rechteck ist.
LösungFolgende Aussagen sind richtig:
- „Die Höhe in einem Viereck steht senkrecht zu mindestens zwei Seiten.“ In einem Viereck ist die Höhe der Abstand zweier paralleler Seiten bzw. eine Strecke zwischen diesen Seiten, die auf beiden senkrecht steht. Die Aussage ist ebenso korrekt, wenn man „mindestens zwei“ durch „genau zwei“ ersetzt.
- „Es gibt kein Viereck, in dem eine Höhe auf einer Diagonalen senkrecht steht.“ Eine Höhe eines Vierecks steht senkrecht auf zwei parallelen Seiten. Stünde eine Höhe senkrecht auf einer Diagonalen, so wäre diese Diagonale parallel zu einer der Seiten. Das ist nicht möglich.
- „Eine Raute ist genau dann ein Quadrat, wenn ihre Höhen orthogonal sind.“ Ein Viereck hat höchstens zwei Höhen. In einem Quadrat sind die Seiten auch Höhen. Die beiden Höhen sind daher orthogonal. Eine Raute ist genau dann ein Quadrat, wenn alle Innenwinkel rechte Winkel sind. Wegen der Orthogonalität der Höhen zu den Seiten ist dies genau dann der Fall, wenn die Höhen orthogonal sind.
- „Die Diagonale eines Vierecks kann keine Höhe des Vierecks sein.“ Bei einem verschränkten Trapez liegen die Diagonalen außerhalb der Fläche des Vierecks. Ist das verschränkte Trapez spiegelsymmetrisch zu der Mittelsenkrechten der parallelen Seiten, so sind die Diagonalen zugleich Höhen des Vierecks. Im Bild siehst du ein solches verschränktes Trapez. Die Diagonalen sind rot eingezeichnet. Bei dem Parallelogramm im Bild ist ebenfalls eine der beiden Diagonalen zugleich eine Höhe.
- „Die kürzeste Höhe eines Vierecks ist höchstens so lang wie die kürzeste Seite.“ Bei einem Trapez kann die Höhe länger als die kürzeste Seite sein.
- „Sind alle Höhen eines Vierecks gleich lang, so ist das Viereck ein Quadrat.“ Auch bei einer Raute sind je zwei Höhen gleich lang.
- „Jede Höhe eines Vierecks ist kürzer als jede Diagonale des Vierecks.“ Bei dem verschränkten Trapez im Bild sind die Diagonalen zugleich die Höhen des Vierecks. Insbesondere sind die Höhen und Diagonalen gleich lang. Bei einem Parallelogramm ist das ebenfalls möglich, wie du in dem Bild siehst.
8.852
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.381
Lernvideos
36.063
Übungen
32.618
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
💝💖💗💓💞💕💟❣️❤️🔥❤️🩹❤️🩷🧡💛💚💙🩵💜🤎🖤🩶🤍🥰😍
sehr gut erklärt
cool
super erklärt und am ende maga witzig 😄 🤣
Sehr gut erklärt