Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Was ist eine Äquivalenzumformung?

Äquivalenzumformung hilft dir, Gleichungen zu lösen, ohne die Lösungen zu verändern. Entdecke die verschiedenen Techniken und wichtige Ausnahmen. Neugierig? Erfahre mehr im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Was ist eine Äquivalenzumformung?

Welche Bedingung muss erfüllt sein, damit eine Umformung als Äquivalenzumformung bezeichnet werden kann?

1/5
Bereit für eine echte Prüfung?

Das Äquivalenzumformung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.1 / 180 Bewertungen
Die Autor*innen
Avatar
Team Digital
Was ist eine Äquivalenzumformung?
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Was ist eine Äquivalenzumformung?

Was ist eine Äquivalenzumformung?

Als Äquivalenzumformungen werden Umformungen von Gleichungen bezeichnet, die die Lösungsmenge der Gleichung nicht verändern. Daher kannst du Gleichungen mit Äquivalenzumformungen lösen.

Im Folgenden schauen wir uns an, welche Äquivalenzumformungen es gibt und was du dabei beachten musst.

Äquivalenzumformungen einfach erklärt

Die Definition von Äquivalenzumformungen besagt, dass sie die Lösungsmenge einer Gleichung nicht verändern dürfen. Die Gleichung kannst du dir wie zwei Waagschalen vorstellen, die im Gleichgewicht bleiben müssen.

Äquivalenzumformung in Mathe

Dabei entspricht jede Waagschale einer Seite der Gleichung. In dem Beispiel aus der Abbildung wäre die Gleichung demnach:

x+2=5x + 2 = 5

Äquivalenzumformung Erklärung

Entfernen wir aus beiden Waagschalen jeweils zwei Gewichte, dann bleibt das Gleichgewicht erhalten. In der Gleichung müssen wir dazu auf beiden Seiten 22 subtrahieren:

x+22=52x + 2 - 2 = 5 - 2

Wir rechnen beide Seiten dieser neuen Gleichung aus und erhalten x=3x = 3 als Lösung.

Äquivalenzumformungen sind also solche Umformungen, die das Gleichgewicht der Waage erhalten. Wir können auf beiden Seiten dieselbe Zahl:

  • addieren,
  • subtrahieren,
  • mit ihr multiplizieren, wenn die Zahl nicht 00 ist und
  • durch sie dividieren, wenn die Zahl nicht 00 ist.

Dabei ist entscheidend, dass auf beiden Seiten der Gleichung die gleiche Umformung stattfindet.

Es gibt außerdem zwei Ausnahmen, die du beachten musst:

  • Wir dürfen nicht mit 00 multiplizieren oder durch 00 dividieren.
  • Wir dürfen nicht mit der Unbekannten multiplizieren oder durch die Unbekannte dividieren.

Würden wir zum Beispiel unsere Gleichung von oben x+2=5x + 2 = 5 auf beiden Seiten mit 00 multiplizieren, dann erhielten wir (x+2)0=50(x + 2) \cdot 0 = 5 \cdot 0. Zusammengefasst ergibt sich: 0=00 = 0. Die Lösung der Gleichung geht hier also verloren. Daher ist das Multiplizieren mit 00 keine Äquivalenzumformung.

Teste dein Wissen zum Thema Äquivalenzumformung!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Äquivalenzumformungen – Beispiel

Betrachten wir nun ein Beispiel für die Berechnung mit Äquivalenzumformungen:

5x9=3x+33x5x3x9=3x3x+32x9=3+92x9+9=3+92x=12:2x=6\begin{array}{rcll} 5x - 9 & = & 3x + 3 & \vert - 3x \\ 5x - 3x - 9 & = & 3x - 3x + 3 & \\ 2x - 9 & = & 3 & \vert + 9 \\ 2x - 9 + 9 & = & 3 + 9 & \\ 2x & = & 12 & \vert :2 \\ x & = & 6 & \end{array}

Hier kannst du sehen, wie die Unbekannte xx nach und nach auf der linken Seite der Gleichung isoliert wird. Dazu verwenden wir nacheinander die Äquivalenzumformungen 3x– 3x, dann +9+ 9 und schließlich :2: 2 jeweils auf beiden Seiten der Gleichung.

Dieses Video

In diesem Video lernst du, welche Äquivalenzumformungen es gibt und wie wir sie anwenden können, um eine Gleichung zu lösen. Im Anschluss gibt es eine Übung mit Aufgaben zu Äquivalenzumformungen.

Transkript Was ist eine Äquivalenzumformung?

Tims Lehrer hat angekündigt seinem Vater eine Email zu schicken. Was da wohl drin steht? Tim kann auf keinen Fall riskieren, dass sein Vater sie zuerst liest. Aber um das zu verhindern, muss er irgendwie in das Postfach seines Vaters. Typisch! Tims Vater hat seine Mailadresse mit einer mathematischen Gleichung abgesichert. Um da reinzukommen, muss Tim wissen, was Äquivalenzumformungen sind und wie man mit ihnen Gleichungen löst. Aber zunächst einmal: Was war überhaupt nochmal eine Gleichung? Eine Gleichung kann zum Beispiel so aussehen: "x plus zwei gleich fünf". Sie verbindet zwei Terme mit einem Gleichheitszeichen. Außerdem enthält eine Gleichung meist eine oder mehrere Variablen beziehungsweise UNBEKANNTE. In unserem Fall ein x. Um herauszufinden, wann unsere Gleichung erfüllt ist, müssen wir ihre LÖSUNG bestimmen. Also den x-Wert, für den beide Terme GLEICHWERTIG sind. Dabei helfen uns ÄQUIVALENZUMFORMUNGEN. Die Bedeutung von Äquivalenzumformungen können wir gut an einer Waage veranschaulichen. Auf der linken Seite liegen das x und zwei Gewichte und auf der rechten liegen fünf Gewichte. Wie schwer muss unser x sein, damit die Waage ausgeglichen ist? Du erkennst wahrscheinlich schon, dass die Lösung in unserem Fall drei ist. Aber wie kommst du darauf? Eine Möglichkeit besteht darin, auf beiden Seiten zwei Gewichte herunterzunehmen. So sehen wir, dass unser x genau so schwer sein muss wie drei Gewichte, damit die Waage im Gleichgewicht ist. Bei unserer Gleichung sieht das so aus: Da wir auf beiden Seiten zwei Gewichte wegnehmen, ziehen wir auch auf beiden Seiten der Gleichung zwei ab. Auf der linken Seite heben sich zwei und minus zwei gegenseitig auf, es bleibt nur noch das x stehen. Auf der rechten Seite bleibt eine drei übrig, nachdem wir zwei abgezogen haben. Und das war schon eine Äquivalenzumformung. Wir verdeutlichen unser Vorgehen, indem wir unseren Rechenschritt rechts an unsere Gleichung hinter einen Strich schreiben. Jetzt können wir die Lösung einfach an der umgeformten Gleichung ablesen: x gleich drei Unser Ziel ist es also, dass das x alleine auf einer Seite steht. Das können wir mit Äquivalenzumformungen erreichen, da durch diese die Lösungsmenge von Gleichungen nicht geändert wird. Wir müssen aber darauf achten, sie immer auf beiden Seiten durchzuführen! Folgende Äquivalenzumformungen sind grundsätzlich möglich: Wir können auf beiden Seiten die gleiche Zahl addieren, die gleiche Zahl subtrahieren, mit der gleichen Zahl multiplizieren, oder durch die gleiche Zahl dividieren. Zwei Ausnahmen müssen wir uns allerdings merken: Wir dürfen dabei nicht mit null multiplizieren oder durch null dividieren und auch mit unserer Unbekannten, beziehungsweise mit Termen, die unsere Unbekannte enthalten, dürfen wir diese beiden Rechenoperationen nicht ausführen. Denn das würde unsere Lösungsmenge ändern. Alles klar, dann jetzt mal ein Beispiel für Fortgeschrittene: "fünf x minus neun gleich drei x plus drei" Hier müssen wir erstmal ein bisschen Ordnung reinbringen. Wir wollen erreichen, dass unsere Unbekannte x nur noch auf EINER Seite steht. Um den Term "drei x" auf der rechten Gleichungsseite zu "eleminieren", nutzen wir die UMKEHROPERATION, also MINUS drei x. So fallen die drei x auf der rechten Gleichungsseite weg. Natürlich müssen wir die gleiche Rechenoperation auch auf der linken Seite durchführen: fünf x minus drei x können wir zu zwei x zusammenfassen. Als nächstes bietet es sich an, die minus neun los zu werden, damit wir nur noch unsere zwei x auf der linken Gleichungsseite haben. Wir wenden erneut die UMKEHROPERATION als Äquivalenzumformung an: Wir rechnen auf beiden Seiten PLUS neun. So - die Gleichung die wir jetzt haben, sieht doch schon viel schöner aus. Damit wir unsere Lösung einfach ablesen können, fehlt nur noch ein Schritt: Wir müssen durch die Zahl vor dem x teilen, also durch zwei. Und das wieder auf BEIDEN Seiten. So erhalten wir unsere Lösung: x gleich sechs. Perfekt, Tim hat das Prinzip verstanden und ist drauf und dran die Gleichung seines Vaters zu knacken. Wir fassen derweil nochmal alles Wichtige zusammen: Äquivalenzumformungen helfen uns dabei Gleichungen zu lösen. Wir können dabei alle Grundrechenarten mit der gleichen Zahl anwenden, also Addition, Subtraktion, Multiplikation und Division. Dabei müssen wir immer darauf achten, die Umformungen auf beiden Seiten durchzuführen. Außerdem dürfen wir weder mit Null oder unseren Unbekannten multiplizieren noch durch diese dividieren. Denn nur wenn wir diese Hinweise beachten, können wir sicherstellen, dass sich die Lösungsmenge unserer Gleichung nicht ändert. Im Endeffekt wollen wir durch die Umformungen erreichen, dass wir unsere Unbekannte alleine auf einer Seite der Gleichung stehen haben. Wir nennen das auch: Die Unbekannte ISOLIEREN. Dann können wir die Lösung einfach ablesen. Endlich ist Tim im Postfach! Glauben die beiden wirklich sie könnten sich hinter seinem Rücken über ihn austauschen? Da haben sie die Rechnung aber ohne ihn gemacht! Was? Er soll DRINGEND Äquivalenzumformungen üben? Na klasse, da ist er den beiden ja schön auf den Leim gegangen, immerhin ist DAS jetzt kein Thema mehr.

13 Kommentare
  1. tbh emily ich fühl dich

    Von Amelie :P, vor 5 Monaten
  2. das Video hat mir sehr geholfen danke

    Von Nina, vor 12 Monaten
  3. war gut check es trotzdem nicht liegt nicht am Video:)

    Von Emily, vor etwa einem Jahr
  4. DANKE WAR SUPER ERKLÄRT!!!!!!!!!

    Von lotti, vor etwa einem Jahr
  5. Danke, Hat mir sehr geholfen.
    Vor allem die schriftliche Erklärung unter dem Video.

    Von Cookie, vor etwa einem Jahr
Mehr Kommentare

Was ist eine Äquivalenzumformung? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was ist eine Äquivalenzumformung? kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.143

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.606

Lernvideos

35.643

Übungen

32.383

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden