Grundrechenarten
Die vier Grundrechenarten sind: +, -, •, :. Diese wirst du immer wieder benötigen.
Beliebteste Videos und Übungen in Grundrechenarten
Beliebteste Videos in Grundrechenarten
Jetzt mit Spaß die Noten verbessern
und sofort Zugriff auf alle Inhalte erhalten!
30 Tage kostenlos testenAlle Themen in Grundrechenarten
- Plus und Minus bis 20 rechnen
- Plus und Minus bis 100 rechnen
- Addieren und subtrahieren bis 1 Million
- Schriftlich und halbschriftlich addieren
- Schriftlich und halbschriftlich subtrahieren
- Kleines Einmaleins (1x1)
- Malnehmen und teilen
- Schriftlich und halbschriftlich multiplizieren
- Schriftlich und halbschriftlich dividieren
- Grundrechenarten bis 1 Million – Beispielaufgaben
- Grundrechenarten – Zusammenfassung
- Summe – Exkurs
- Subtraktion – Was ist das?
Themenübersicht in Grundrechenarten
Die vier Grundrechenarten
Merke dir für die Grundrechenarten:
- Plusrechnen, das nennt man auch addieren: Summand plus Summand gleich Summe. Du verwendest das „$+$“-Zeichen.
- Minusrechnen, das nennt man auch subtrahieren: Minuend minus Subtrahend gleich Differenz. Du verwendest das „${-}$“-Zeichen.
- Malrechnen, das nennt man auch multiplizieren: Faktor mal Faktor gleich Produkt. Du verwendest das „$\cdot$“-Zeichen.
- Teilen, das nennt man auch dividieren: Dividend durch Divisor gleich Quotient. Du verwendest das „$:$“-Zeichen.
Die Strich-Rechenarten
Die Addition und die Subtraktion werden als Strichrechnung bezeichnet.
Plusrechnen - Addieren
Du kannst zu einer Zahl eine andere hinzufügen oder addieren:
- Zunächst lernst du das Rechnen mit Plus und Minus bis $20$.
- Dann folgt das Rechnen mit Plus und Minus bis $100$.
- Schließlich werden die Zahlen immer größer und du lernst das Addieren und Subtrahieren bis $1$ Million.
Wie gehst du bei einer Addition vor? Du schreibst die Zahlen zunächst stellengenau untereinander und addierst dann von rechts nach links jede einzelne Stelle. Manchmal musst du dabei auch einen Übertrag machen. Du lernst also das schriftliche und halbschriftliche Addieren.
Minusrechnen - Subtrahieren
Ebenso wie beim Addieren lernst du das Subtrahieren zunächst bis $20$, dann bis $100$ und schließlich bis $1$ Million kennen.
Bei größeren Zahlen ist es angebracht, schriftlich und halbschriftlich zu subtrahieren.
Übrigens: Das Addieren ist die Umkehraufgabe des Subtrahierens und ebenso ist das Subtrahieren die Umkehraufgabe des Addierens.
Die Punkt-Rechenarten
Die Multiplikation sowie die Division werden als Punktrechnung bezeichnet.
Malrechnen - Multiplizieren
Zuerst wirst du das Malnehmen am Beispiel von Malreihen kennenlernen. Zum Beispiel siehst du hier den Anfang der Malreihe von $4$:
- $1\cdot 4=4$
- $2\cdot 4=8$
- $3\cdot 4=12$
- ...
Das Malnehmen ist eine abkürzende Schreibweise für das Addieren. Wenn du beispielsweise $3$ mal den Summanden $4$ hast, also $4+4+4$, kannst du diese Summe auch als Produkt schreiben: $4+4+4=3\cdot 4$.
Zusammengefasst werden die Malreihen von $1$ bis $10$ im Kleinen Einmaleins (1x1): Jede Zahl von $1$ bis $10$ wird mit jeder Zahl von $1$ bis $10$ multipliziert.
Um größere Zahlen miteinander multiplizieren zu können, lernst du schriftlich und halbschriftlich zu multiplizieren.
Teilen - Dividieren
Die Umkehraufgabe zum Multiplizieren ist das Dividieren. Das gilt natürlich auch andersrum. So ist nämlich das Dividieren auch die Umkehraufgabe des Multiplizierens.
Zum Dividieren von großen Zahlen wirst du das schriftliche und halbschriftliche Dividieren lernen.
Merke dir für die Strich- und Punktrechnung die folgende Reihenfolge: „Punkt geht vor Strich.“
Die Grundrechenarten bis 1 Million kommen in vielen Beispielaufgaben vor.
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel