Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die n-te Wurzel – Einführung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Nte Wurzel Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.6 / 17 Bewertungen
Die Autor*innen
Avatar
Wolfgang Tews
Die n-te Wurzel – Einführung
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Die n-te Wurzel – Einführung

In diesem Video lernst du die Schreibweise von n-ten Wurzeln kennen. Verschiedene Schreibweisen werden mit Hilfe von bekannten Potenzgesetzen notiert. Dabei wird auch der Kehrwert von n-ten Wurzeln behandelt.

Transkript Die n-te Wurzel – Einführung

Hallo. Wir wollen uns heute mit der n-ten Wurzel und ihrer Schreibweise beschäftigen. Du solltest dazu wissen, was man unter einer Quadratwurzel versteht, wie Wurzelgleichungen gelöst werden, wie Potenzen definiert sind und welche Potenzgesetze gelten. Wir lernen heute den allgemeinen Zusammenhang zwischen Potenzieren und Wurzelziehen und einige Begriffe, die mit dem Wurzelziehen zusammenhängen. Die Zuordnung von Zahlen x zu ihren Quadraten x2 kann mit Hilfe einer Tabelle veranschaulicht werden: 02=0, 12=1, 22=4, 32=9. Dies kann beliebig fortgesetzt werden. Die Zuordnung wird mit Potenzieren (hoch 2) beziehungsweise Quadrieren bezeichnet. Eine Zahl x mit sich selbst multiplizieren nennt man Potenzieren (hoch 2) oder Quadrieren. Liest man die Tabelle von rechts nach links, erhält man die Umkehrung des Quadrierens, dies wird als Wurzelziehen beziehungsweise Radizieren bezeichnet. Ist 9=32, dann heißt drei die zweite Wurzel aus neun oder Quadratwurzel aus neun oder kurz Wurzel aus neun. Ist 4=22, dann ist zwei die Wurzel aus vier und so weiter. Allgemein definiert man: x=a ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. Man nennt x Quadratwurzel aus a. Damit ist a die nichtnegative Lösung der Gleichung x2=a. Nun betrachten wir die Zuordnung von Zahlen x zu ihren dritten Potenzen x3 wieder in einer Tabelle: 03=0, 13=1, 23=8, 33=27. Dies kann wieder beliebig fortgesetzt werden. Diese Zuordnung wird mit Potenzieren (hoch 3) bezeichnet. Liest man die Tabelle wieder von rechts nach links, erhält man die Umkehrung des Potenzierens, Wurzelziehen beziehungsweise Radizieren. Ist 27=33, dann heißt drei die dritte Wurzel aus 27. Ist 8=23, dann ist zwei die dritte Wurzel aus acht und so weiter. Allgemein sagt man: Gilt a=x3 mit x≥0, so heißt x=3a eben die dritte Wurzel aus a. 3a ist also die nichtnegative Lösung der Gleichung x3=a. Nun zur allgemeinen Definition der n-ten Wurzel. Gilt a≥0 und a, also dem Bereich der reellen Zahlen, und n>0 sowie n, also dem Bereich der natürlichen Zahlen größer als Null, dann bezeichnet man mit x=na diejenige nichtnegative Zahl x, die mit n potenziert a ergibt. Also xn=a. Dabei gelten folgende Bezeichnungen: x=na mit n als Wurzelexponent und a als Radikand für die Zahl unter dem Wurzelzeichen. Hier ein Beispiel mit dem Wurzelexponenten vier und 256 als Radikand: 4256=4, denn 4444=44=256. Und hier zu Schreibweisen für die n-te Wurzel. Wir haben gesehen, dass Potenzieren und Wurzelziehen Umkehroperationen sind. Es gilt (na)n=a beziehungsweise nan=a. Und hier ein Beispiel: (416)4=16 beziehungsweise 4164=16. Nun zu den n-ten Wurzeln in Potenzschreibweise. Mit Hilfe der bekannten Potenzgesetze kann man schreiben: a=ann=a1nn. Und dies kann man schreiben als (a1n)n. Ein Vergleich von in Klammern (a1n)n mit (na)n zeigt, dass die Klammerinhalte gleich sind, dass also gilt: na=a1n. Für den Kehrwert der n-ten Wurzel als Potenz folgt 1na=1a1n. Und das ist wiederum gleich (a1n)-1=a1n*(-1). Und das ergibt a-1n. Zum Schluss noch zwei Beispiele für die Anwendung der Schreibweisen: 416=1614=2 und 81-14=18114=1481=13. Wir fassen zusammen: Definition der Quadratwurzel: x=a ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. Man nennt x Quadratwurzel aus a. Damit ist a die nichtnegative Lösung der Gleichung x2=a. Definition der n-ten Wurzel: Gilt a≥0 und a und n>0 sowie n, dann bezeichnet man mit x=na diejenige nichtnegative Zahl x, die mit n potenziert a ergibt. Also xn=a. n heißt Wurzelexponent und a Radikand. Weiterhin gilt für die Potenzschreibweise von n-ten Wurzeln: na=a1n und 1na=a-1n. Das wars wieder für heute. Ich hoffe, dir hat es etwas Spaß gemacht und du hast alles verstanden. Dann bis zum nächsten Mal.

3 Kommentare
  1. Wie finde ich n heraus, wenn ich den Radikanten und den Wurzelwert habe? Muss ich dann endlos teilen oder gibt es dafür eine Formel?

    Von Virginia, vor 10 Monaten
  2. einundachtzig

    Von Frederik Rusch, vor mehr als 10 Jahren
  3. Super!

    Von Malvepony, vor fast 11 Jahren

Die n-te Wurzel – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die n-te Wurzel – Einführung kannst du es wiederholen und üben.
  • Beschreibe die zweite Wurzel.

    Tipps

    Eine Potenz ist ein Term der Form

    $a^n$,

    dabei ist

    • $a$ die Basis, welche mit
    • $n$, dem Exponenten, potenziert wird.

    „Radizieren“ kommt von „Radix“, lateinisch für „Wurzel“.

    Wenn $2^2=4$ ist, so gilt $\sqrt 4 =2$.

    Die Wurzel einer Zahl $a$ ist die nichtnegative Zahl, welche quadriert $a$ ergibt.

    Lösung

    Um von einem $x$ zu $x^2$ zu kommen

    • potenziert man mit $2$,
    • man sagt auch Quadrieren dazu.
    Um von dem $x^2$ wieder zurück zu dem $x$ zu kommen
    • zieht man die $2$-te Wurzel oder auch Quadratwurzel oder einfach Wurzel,
    • man sagt auch Radizieren dazu.
    „Radizieren“ kommt von „Radix“, lateinisch für „Wurzel“.

  • Gib wieder, weshalb $\sqrt[n] a=a^{\frac1n}$ gilt.

    Tipps

    Du kannst die folgenden Potenzregeln anwenden:

    • $a^1=a$ sowie
    • $\left( a^n\right)^m=a^{n\cdot m}$.

    Wenn zwei positive Zahlen mit dem gleichen Exponent potenziert den gleichen Wert liefern, so müssen die Zahlen übereinstimmen.

    Die $n$-te Wurzel kehrt das Potenzieren mit $n$ um.

    Zum Beispiel kehrt die dritte Wurzel das Potenzieren mit $3$ um:

    $\sqrt[3]{27}=3$ , da $3^3=27$ gilt.

    Lösung

    Zum Nachweis der Identität $\sqrt[n] a=a^{\frac1n}$ beginnt man mit $a=a^1=a^{\frac nn}$.

    Nun können Regeln für das Rechnen mit Potenzen angewendet werden:

    $\begin{align*} a^{\frac nn}&=a^{\frac1n \cdot n}\\ &=\left( a^{\frac1n}\right)^n. \end{align*}$

    Da die $n$-te Wurzel die Umkehrung des Potenzierens mit $n$ ist, gilt

    $\left(\sqrt[n]a\right)^n=a$.

    Da die Werte der beiden Potenzen übereinstimmen, müssen auch die Basen übereinstimmen. Es gilt also

    $\sqrt[n] a=a^{\frac1n}$.

    Da $\frac1{a^n}=a^{-\frac1n}$ ist, kann auch

    $\frac1{\sqrt[n] a}=a^{-\frac1n}$

    abgeleitet werden.

  • Berechne die Wurzel $\sqrt[4] {625}$.

    Tipps

    Das Ergebnis ist eine ganze Zahl.

    Die vierte Wurzel kehrt das Potenzieren mit $4$ um.

    Überlege dir, welche Zahl hoch $4$ $625$ ergibt.

    Lösung

    Die vierte Wurzel kehrt das Potenzieren mit $4$ um. Man kann sich also fragen, welche Zahl mit $4$ potenziert $625$ ergibt. Da die Einer-Zahl $5$ ist, muss auch die Zahl, welche potenziert wird als Einer eine $5$ haben.

    Es gilt $5^4=625$.

    Deshalb ist $\sqrt[4]{625}=5$.

  • Leite den Wert der Potenz $0,25^{-\frac12}$ her.

    Tipps

    Es gilt

    $a^{-n}=\frac1{a^n}$.

    Wird ein Bruch mit einer negativen Zahl potenziert, so kann man auch den Kehrwert des Bruches mit der positiven Zahl potenzieren:

    $\left(\frac ab\right)^{-n}=\left(\frac ba\right)^n$.

    Die Quadratwurzel kann als Potenz geschrieben werden:

    $\sqrt a=a^{\frac12}$.

    Es gilt: $\frac{1}{3}^{-\frac{1}{3}}=3 ^{\frac{1}{3}}$.

    Lösung

    Es gilt

    $0,25^{-\frac12}=\left(\frac14\right)^{-\frac12}$.

    Nun kann entweder sowohl der Zähler als auch der Nenner mit dem Exponenten potenziert werden:

    $\left(\frac14\right)^{-\frac12}=\frac1{4^{-\frac12}}=\frac1{\frac1{4^{\frac12}}}=\frac1{\frac12}=2$

    oder der Bruch mit der negativen Zahl potenziert werden, indem der Kehrwert des Bruches mit der positiven Zahl potenziert wird:

    $\left(\frac14\right)^{-\frac12}=\left(\frac41\right)^{\frac12}=4^{\frac12}=2$.

  • Fasse zusammen, wie die $n$-te Wurzel als Potenz geschrieben werden kann.

    Tipps

    Es gilt $\left(a^{\frac1n}\right)^n=a$.

    Es gilt $\frac1{a^n}=a^{-n}$.

    Wenn $2^2=4$ ist, so gilt $\sqrt 4=2$.

    Lösung

    Die Wurzeln sind wie folgt definiert:

    • $x=\sqrt a$ ist diejenige nichtnegative Zahl, deren Quadrat $a$ ergibt. Man nennt $x$ die Quadratwurzel aus $a$.
    • Gilt $a≥0$ und $a\in \mathbb{R}$ und $n>0$, $n\in \mathbb{N}$, dann bezeichnet man mit $x=\sqrt[n] a$ diejenige nichtnegative Zahl $x$, welche mit $n$ potenziert $a$ ergibt.
    Dabei ist in der zweiten Definition $n$ der Wurzelexponent und $a$ der Radikand, die Zahl aus der die Wurzel gezogen wird.

    Wurzeln können auch als Potenzen geschrieben werden:

    • $\sqrt[n] a=a^{\frac1n}$ und
    • $\frac1{\sqrt[n] a}=a^{-\frac1n}$.

  • Ermittle den Wert von $0,0016^{\frac14}$.

    Tipps

    Das Erebnis ist eine Dezimalzahl mit einer Nachkommastelle.

    Es gilt $\sqrt[4]{625}=5$ und $0,0016=\frac1{625}$.

    In der Basis $0,0016$ ist die Zahl $16$ enthalten. Welche Zahl hoch $4$ ergibt $16$?

    Lösung

    Die Basis der Potenz ist $0,0016$.

    Es gilt $2^4=16$. Die Zahl $16$ ist bereits in der Basis zu finden. Die Basis ist eine Dezimalzahl handelt, welche auch so

    $0,0016=1,6\cdot 10^{-3}=16\cdot 10^{-4}$.

    Nach den Regeln zum Rechnen mit Potenzen gilt

    $\begin{align*} 0,0016^{\frac14} &=\left(16\cdot 10^{-4}\right)^{\frac14}\\ &=16^{\frac14}\cdot \left(10^{-4}\right)^{\frac14}\\ &=2\cdot 10^{-4\cdot \frac14}\\ &=2\cdot 10^{-1}\\ &=2\cdot 0,1\\ &=0,2. \end{align*}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.883

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.384

Lernvideos

36.046

Übungen

32.594

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden