Fibonacci-Folge
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lerntext zum Thema Fibonacci-Folge
Fibonacci-Folge – Einführung
Hast du dich schon einmal gefragt, was eine Folge ist? Vielleicht hast du auch schon einmal den Namen Fibonacci gehört. Erst einmal vorweg: Nein, das ist kein italienisches Nudelgericht, sondern war ein bedeutender Mathematiker. Nach Leonardo Fibonacci ist eine von ihm im Mittelalter angewandte Zahlenfolge benannt, die bis heute eine wichtige Rolle in der Mathematik spielt – die Fibonacci-Folge.
Eine Zahlenfolge ist eine Funktion, die ein Muster beschreibt, das in einer Aneinanderreihung von Zahlen auftritt. Die einzelnen Glieder der Zahlenfolge sind dabei eindeutig den natürlichen Zahlen zugeordnet.
Die Fibonacci-Folge ist eine unendliche Abfolge an Zahlen – dabei sehen die ersten Glieder wie folgt aus:
Ein nachfolgendes Glied wird immer aus der Summe der zwei vorherigen Zahlen gebildet. Dies kann unendlich oft weitergeführt werden. Das nächste Glied würde demnach berechnet werden mit:
Geschichtlicher Hintergrund – das Kaninchenproblem
Was hat die Fibonacci-Folge mit Kaninchen zu tun? Der Mathematiker Leonardo Fibonacci entdeckte die Zahlenfolge, während er das Wachstum einer Kaninchenpopulation beobachtete. Dabei stellte er Folgendes fest:
Wenn Kaninchen sich vermehren, dann kann ein erwachsenes Paar jeden Monat ein neues Kaninchenpaar zeugen. Die jungen Kaninchenpaare müssen dann erst einen Monat lang erwachsen werden, bevor sie sich selbst vermehren können.
Wenn man nun das Wachstum einer neuen Kaninchenpopulation beschreiben möchte, kann man also die Fibonacci-Folge zu Hilfe nehmen:
Man geht davon aus, dass am Anfang noch kein Kaninchenpaar vorhanden ist und dieses erst zu Beginn des zweiten Monats angeschafft wird. Dafür stehen die ersten beiden Zahlen der Folge:
und
Das Paar braucht jetzt einen Monat, um erwachsen zu werden. Dann kann es selbst ein Kaninchenpaar zeugen, deshalb hat die Zahlenfolge im dritten Monat auch den Wert:
Im vierten Monat kommt dann deren erstes Kaninchenpaar auf die Welt. Also gibt es im vierten Monat zwei Kaninchenpaare:
Im nächsten Monat bekommt das Anfangspaar wieder ein neues Pärchen und das von ihnen im Vormonat gezeugte Pärchen wird erwachsen. Deshalb rechnet man im fünften Monat:
Im sechsten Monat sind dann zwei Kaninchenpaare zeugungsfähig, es kommen also zwei Pärchen hinzu.
Diesen Gedankengang kann man jetzt beliebig oft wiederholen. Die Anzahl der Kaninchenpaare im Folgemonat wird dabei immer so groß sein wie das nächste Folgenglied in der Fibonacci-Folge.
Fibonacci-Folge – rekursive Formel
Wie bereits oben beschrieben ergeben immer zwei aufeinanderfolgende Glieder addiert das nächste Folgenglied in der Fibonacci-Folge. Dies kann man mit der folgenden Formel ausdrücken:
In Worten: Das -te Folgenglied ist die Summe seiner beiden Vorgänger. Die Darstellungsweise wird als rekursiv bezeichnet. Das bedeutet, dass sich auf vorherige Folgenglieder bezogen wird, um ein neues Folgenglied zu berechnen. Grundsätzlich gilt, dass sich Zahlenfolgen rekursiv darstellen lassen.
Ein Folgenglied ist also leicht berechenbar, wenn die beiden vorangegangenen Folgenglieder bekannt sind.
In der nachfolgenden Tabelle findest du einmal eine Übersicht über die ersten Folgenglieder der Fibonacci-Folge:
Folgenglied | Berechnung | Wert |
---|---|---|
Fibonacci-Folge – explizite Formel (Formel von Moivre-Binet)
Die rekursive Formel der Fibonacci-Folge macht das zugrunde liegende Muster der Folge sehr gut deutlich. Allerdings stößt diese Darstellungsform an ihre Grenzen, wenn man mit ihr sehr hohe Folgenglieder bestimmen möchte. In dem Fall ist es sehr aufwendig, konkrete Werte zu berechnen.
Wenn man zum Beispiel bestimmen will, ist dies mit der rekursiven Darstellung nicht ohne Weiteres möglich, wenn die Glieder und nicht bekannt sind. Auch diese müssten erst berechnet werden.
Wegen dieser Problematik haben die Mathematiker Abraham de Moivre und Jacques Philippe Marie Binet unabhängig voneinander ein explizites Bildungsgesetz für die Glieder der Fibonacci-Folge entdeckt. Dieses ist in der Formel von Moivre-Binet festgehalten.
Diese explizite Darstellung für Fibonacci-Folgenglieder lautet wie folgt:
Diese Formel sieht sehr kompliziert aus und es ist zunächst kaum zu glauben, dass sie tatsächlich für jedes eine Fibonacci-Zahl und somit eine natürliche Zahl ergibt. Zur Überprüfung berechnen wir die ersten Glieder der Fibonacci-Folge mithilfe der Formel:
Explizite Darstellung – Übung
Jetzt bist du dran! Berechne nachfolgend mithilfe der Formel von Moivre-Binet die angegebenen Glieder der Fibonacci-Folge.
Die Fibonacci-Folge – Zusammenfassung
Die Fibonacci-Folge ist eine spezielle Folge in der Mathematik, deren einzelnen Glieder sich immer als Summe ihrer zwei vorherigen Glieder ergeben.
Man kann ein einzelnes Glied der Folge mit folgender Bildungsvorschrift bestimmen:
Dies ist die rekursive Darstellung der Fibonacci-Folge.
Da diese Bildungsvorschrift an ihre Grenzen stößt, wenn man ein ganz bestimmtes Folgenglied berechnen will, ohne die Vorgänger zu kennnen, haben die Mathematiker Abraham de Moivre und Jacques Philippe Marie Binet eine Formel entwickelt, mit der dies möglich ist:
Bei dieser Formel handelt es sich um die explizite Darstellung der Fibonacci-Folge.
Fibonacci-Folge Übung
-
Beschreibe, was rekursive und explizite Darstellungen von Folgen sind.
-
Gib eine rekursive Darstellung der Fibonacci-Folge an.
-
Ermittle weitere Folgeglieder der Fibonacci-Folge.
-
Leite eine explizite Darstellungsform der Folge her.
-
Berechne die Folgeglieder der Fibonacci-Folge.
-
Berechne einige Folgeglieder.
9.172
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.600
Lernvideos
35.587
Übungen
32.330
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal