- Mathematik
- Wahrscheinlichkeitsrechnung und Stochastik
- Satz von der totalen Wahrscheinlichkeit
- Satz von der totalen Wahrscheinlichkeit – Einführung
Satz von der totalen Wahrscheinlichkeit – Einführung
Starte dafür schnell & einfach deine kostenlose Testphase
und verbessere mit Spaß deine Noten!
-
Lernvideos für alle Klassen und Fächer, die den Schulstoff kurz und prägnant erklären.
-
steigere dein Selbstvertrauen im Unterricht, indem du vor Tests und Schularbeiten mit unseren unterhaltsamen interaktiven Übungen lernst.
-
lerne unterwegs mit den Arbeitsblättern zum Ausdrucken – zusammen mit den dazugehörigen Videos ermöglichen diese Arbeitsblätter eine komplette Lerneinheit.
-
24h-Hilfe von Lehrer*innen, die immer helfen, wenn du es brauchst.
Testphase jederzeit online beenden
Sie sind Lehrkraft? Hier entlang!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Satz Der Totalen Wahrscheinlichkeit Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Satz von der totalen Wahrscheinlichkeit – Einführung
Nach dem Schauen dieses Videos wirst du in der Lage sein, die Wahrscheinlichkeit eines Ereignisses unter Anwendung des Satzes der totalen Wahrscheinlichkeit zu bestimmen.
Zunächst lernst du, wie du ein Baumdiagramm mittels der Bestimmung der Gegenwahrscheinlichkeiten vervollständigen kannst. Anschließend leiten wir gemeinsam unter Anwendung der ersten und zweiten Pfadregel den Satz der totalen Wahrscheinlichkeit her. Abschließend lernst du, wie du diesen in unterschiedlichen Beispielen anzuwenden hast.
Lerne etwas über den Satz der totalen Wahrscheinlichkeit, indem du an der Planung des nächsten Klassenausflugs teilnimmst.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie den Satz der totalen Wahrscheinlichkeit, die erste und zweite Pfadregel, das Ereignis, das Gegenereignis, die Wahrscheinlichkeit, die Gegenwahrscheinlichkeit sowie die bedingte Wahrscheinlichkeit.
Bevor du dieses Video schaust, solltest du bereits wissen, was eine Wahrscheinlichkeit sowie ein Baumdiagramm ist.
Nach diesem Video wirst du darauf vorbereitet sein, dein Wissen im Bereich der Wahrscheinlichkeitsrechnung zu vertiefen.
Transkript Satz von der totalen Wahrscheinlichkeit – Einführung
Endlich! Der große Schulausflug steht an. Wohin es geht, bestimmt das Los! Alle Lehrer und Schüler dürfen aus zwei Vorschlägen ihr Lieblingsziel auswählen. Dafür werfen sie ein Los in eine Urne. Zur Wahl stehen dieses Mal: ein Besuch im Museum oder Lasertag! Wohin wird der Ausflug wohl gehen? Um die Wahrscheinlichkeiten für die beiden Ziele zu bestimmen, nutzen wir den Satz der totalen Wahrscheinlichkeit für zwei Ereignisse. Wenn wir einen Zettel aus der Urne ziehen, kann er entweder von einem Schüler...oder von einem Lehrer ausgefüllt worden sein. Und er ist entweder für das Museum oder für Lasertag. Die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel zum Beispiel für das Museum ist, entspricht diesen beiden Pfaden in dem Baumdiagramm. Aber wie rechnen wir diese Wahrscheinlichkeit genau aus? Ersteinmal schreiben wir kurz S für das Ereignis "Schüler" und M für das Ereignis "Museum". Das Gegenereignis zum Ereignis Schüler bezeichnen wir mit nicht S. Ebenso bezeichnen wir das Gegenereignis zum Museum, als nicht M. An die Pfade des Baumdiagramms kommen die zugehörigen Wahrscheinlichkeiten. Die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel von einem Schüler kommt, ist P von S. Aber was gehört an diesen Pfad? Wenn wir dem ganzen Pfad folgen, ist es klar: Das ist die bedingte Wahrscheinlichkeit P von M unter der Bedingung S, also die Wahrscheinlichkeit, dass ein Zettel für das Museum von einem Schüler stammt. Die übrigen Pfade beschriften wir nach dem gleichen Muster. Wie wahrscheinlich es ist, dass wir einen Zettel ziehen, der von einem Schüler stammt, und der für den Museumsbesuch stimmt, können wir mit der ersten Pfadregel ausrechnen, indem wir die Wahrscheinlichkeiten entlang des Pfades multiplizieren. Die Wahrscheinlichkeit von S UND M ist dann also gleich der Wahrscheinlichkeit von S...mal der bedingten Wahrscheinlichkeit von M unter der Bedingung S. Ebenso können wir die Wahrscheinlichkeiten der anderen Pfade berechnen. Und wie wahrscheinlich ist es nun insgesamt, dass wir M ziehen? Dafür brauchen wir die zweite Pfadregel: wir addieren also diese beiden Pfadwahrscheinlichkeiten. Moment mal - wieso geht das eigentlich? Wir betrachten zunächst ein Venndiagramm, um zu identifizieren, woraus sich das Ereignis M zusammensetzt. Wo überall finden wir das Ereignis M? Ein Teil von M liegt in S und ein Teil nicht in S. Deshalb setzt sich P von M zusammen aus... der Schnittmenge von S und M, P von "S und M" sowie der Schnittmenge von nicht S und M, P von "nicht-S und M". Findest du diese Wahrscheinlichkeiten in dem Baumdiagramm? Zu P von S und M gehört dieser Pfad...und zu P von nicht S und M dieser. Wichtig ist, immer alle Pfade zu finden, die im gesuchten Ereignis, bei uns also M, enden. P von "S und M" haben wir bereits mit der ersten Pfadregel bestimmt. Ebenso können wir P von "nicht-S und M" bestimmen. Wenn wir die beiden Ausdrücke durch die Produkte ersetzen, erhalten wir die totale Wahrscheinlichkeit für P von M. Um eine Prognose für das Ausflugsziel abgeben zu können, fehlen uns noch die Wahrscheinlichkeiten entlang der Pfade. Wir nehmen an, die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel von einem Schüler stammt, beträgt 97% Wir schreiben das als Dezimalzahl 0,97. Es ist ziemlich wahrscheinlich, dass ein Schüler nicht für den Museumsbesuch ist - sagen wir 70%. Bei den Lehrern ist es wohl ausgeglichener. 56% der Lehrer wollen ins Museum. Die Pfade zu den Gegenereignissen können wir, so wie hier, über die Gegenwahrscheinlichkeiten berechnen. Genauso können wir die noch fehlenden Wahrscheinlichkeiten angeben. Wohin wird der Ausflug denn nun vermutlich gehen? Wir berechnen die Wahrscheinlichkeit für den Museumsbesuch. Die Wahrscheinlichkeiten übernehmen wir aus dem Baumdiagramm und damit ist P von M rund 0,308, also 30,8 %. Es ist also nicht sehr wahrscheinlich, dass der Ausflug ins Museum geht. Ein Glück! Während die Schüler und Lehrer Loszettel einwerfen, fassen wir nochmal zusammen. Zur Berechnung der totalen Wahrscheinlichkeit von zwei Ereignissen zeichnet man zunächst ein Baumdiagramm und identifiziert alle Pfade, die in dem gesuchten Ereignis enden. Dann berechnen wir die Wahrscheinlichkeiten der einzelnen Pfade mit Hilfe der ersten Pfadregel und addieren die beiden Pfadwahrscheinlichkeiten. Als Ausflugsziel wurde auch tatsächlich Lasertag gezogen! Aber was ist das? Ein Lasertag Museum?!
Satz von der totalen Wahrscheinlichkeit – Einführung Übung
-
Definiere die erste und zweite Pfadregel sowie die Gegenwahrscheinlichkeit.
TippsHier abgebildet ist ein Baumdiagramm mit den Wahrscheinlichkeiten der jeweiligen Elementarereignisse. Diese resultieren aus der 1. Pfadregel.
Die Wahrscheinlichkeit, eine grüne Kugel zu ziehen, entspricht $\frac 35$. Die Wahrscheinlichkeit, eine orange Kugel zu ziehen, entspricht $\frac 25$.
Diese ist die Gegenwahrscheinlichkeit zu $\frac 35$.
LösungWenn wir einen Zettel aus der Urne ziehen, kann dieser entweder von einem Schüler bzw. einer Schülerin ($S$) oder von einem Lehrer bzw. einer Lehrerin ($\overline S$) ausgefüllt worden sein. Zudem wählt jede Person das Museum $(M$) oder Lasertag ($\overline M$).
Die Wahrscheinlichkeit, dass ein zufällig gezogener Zettel für das Museum ist, entspricht den beiden hier abgebildeten Pfaden.
Betrachten wir nun beide Pfade getrennt voneinander: Zunächst möchten wir wissen, wie wahrscheinlich es ist, dass der Zettel von einem Schüler bzw. einer Schülerin und für das Museum ist.
Wir suchen also die Wahrscheinlichkeit für das Elementarereignis $P(S\cap M)$. Diese resultiert aus der 1. Pfadregel, nämlich aus der Multiplikation der Wahrscheinlichkeiten des zugehörigen Pfades:
$P(S)\cdot P(M\vert S)$
Die Wahrscheinlichkeit $P(M\vert S)$ wird als bedingte Wahrscheinlichkeit bezeichnet. Sie entspricht der Wahrscheinlichkeit von $M$ unter der Voraussetzung, dass $S$ eingetreten ist.
Die Wahrscheinlichkeit dafür, dass der gezogene Zettel von einem Lehrer bzw. einer Lehrerin stammt und für das Museum stimmt, erhalten wir ebenfalls mit der 1. Pfadregel. Es gilt $P(\overline S)\cdot P(M\vert \overline S)$.
Hierbei ist $\overline S$ das Gegenereignis zu dem Ereignis $S$ und steht für den Lehrer bzw. die Lehrerin. Die Wahrscheinlichkeit eines Gegenereignisses wird Gegenwahrscheinlichkeit genannt und wie folgt berechnet:
$P(\overline S)=1-P(S)$
Jetzt können wir unter Verwendung der 2. Pfadregel die Wahrscheinlichkeit dafür berechnen, dass der gezogene Zettel für das Museum stimmt. Dazu addieren wir die beiden Wahrscheinlichkeiten, die wir aus der 1. Pfadregel erhalten haben. Es folgt dann der Satz der totalen Wahrscheinlichkeit für zwei Ereignisse:
$P(M)=P(S)\cdot P(M\vert S)+P(\overline S)\cdot P(M\vert \overline S)$
-
Bestimme die Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$.
TippsDie Gegenwahrscheinlichkeit der Wahrscheinlichkeit $P(S)$ kannst du wie folgt bestimmen:
$P(\overline S)=1-P(S)$
Der Satz der totalen Wahrscheinlichkeit lautet:
$ \begin{array}{llccc} P(M) &=& P(S\cap M) &+& P(\overline S\cap M)\\ &=& P(S)\cdot P(M\vert S) &+& P(\overline S)\cdot P(M\vert \overline S) \end{array} $
LösungFür die Berechnung der Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$ verwenden wir den Satz der totalen Wahrscheinlichkeit:
$ \begin{array}{lll} P(M) &=& P(S\cap M) + P(\overline S\cap M) \\ P(\overline M) &=& P(S\cap \overline M) + P(\overline S\cap \overline M) \end{array} $
Dieser resultiert aus der zweiten Pfadregel. Die hier enthaltenen Summanden erhalten wir aus der ersten Pfadregel. Es folgt dann:
$ \begin{array}{lll} P(M) &=& P(S)\cdot P(M\vert S) &+& P(\overline S)\cdot P(M\vert \overline S) \\ P(\overline M) &=& P(S)\cdot P(\overline M\vert S) &+& P(\overline S)\cdot P(\overline M\vert \overline S) \end{array} $
Jedoch fehlen uns für die Berechnung der Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$ noch Wahrscheinlichkeiten an einigen Pfaden. Diese erhalten wir über die jeweiligen Gegenwahrscheinlichkeiten:
$ \begin{array}{lllll} P(\overline S) &=& 1-P(S) &=& 1-0,97 &=& 0,03\\ P(M\vert S) &=& 1-P(\overline M\vert S) &=& 1-0,7 &=& 0,3\\ P(\overline M\vert\overline S) &=& 1-P(M\vert\overline S) &=& 1-0,56 &=& 0,44 \end{array} $
Jetzt können wir die Summanden für den Satz der totalen Wahrscheinlichkeit bestimmen:
$ \begin{array}{lllllll} P(S\cap M) &=& P(S)\cdot P(M\vert S) &=& 0,97\cdot 0,3 &=& 0,291\\ P(S\cap \overline M) &=& P(S)\cdot P(\overline M\vert S) &=& 0,97\cdot 0,7 &=& 0,679\\ P(\overline S\cap M) &=& P(\overline S)\cdot P(M\vert \overline S) &=& 0,03\cdot 0,56 &\approx & 0,017\\ P(\overline S\cap \overline M) &=& P(\overline S)\cdot P(\overline M\vert \overline S) &=& 0,03\cdot 0,44 &\approx & 0,013 \end{array} $
Nun können wir die Wahrscheinlichkeiten $P(M)$ und $P(\overline M)$ berechnen:
$ \begin{array}{lll} P(M) &=& P(S\cap M) + P(\overline S\cap M) &=& 0,291+0,017 &=& 0,308\\ P(\overline M) &=& P(S\cap \overline M) + P(\overline S\cap \overline M) &=& 0,679+0,013 &=& 0,692 \end{array} $
-
Ermittle die gesuchten Wahrscheinlichkeiten.
Tipps1. Pfadregel
Die Wahrscheinlichkeit eines Elementarereignisses resultiert aus der Multiplikation der Wahrscheinlichkeiten des zugehörigen Pfades.
Demnach gilt zum Beispiel $P(b,b)=\frac 58 \cdot \frac 47$.
2. Pfadregel
Die Wahrscheinlichkeit eines Ereignisses resultiert aus der Addition der Wahrscheinlichkeiten der Pfade, welche zu diesem Ereignis führen.
Demnach gilt zum Beispiel $P(\{b,b\},\{b,r\})=P(\{b,b\})+P(\{b,r\})$.
LösungZunächst überlegen wir, wie sich die gegebenen Ereignisse zusammensetzen:
$ \begin{array}{llllll} \\ A: & \text{Mindestens eine rote Kugel wird gezogen.} && \rightarrow && A=\{\{b,r\},\{r,b\},\{r,r\}\} \\ B: & \text{Mindestens eine blaue Kugel wird gezogen.} && \rightarrow && B=\{\{b,b\},\{b,r\},\{r,b\}\} \\ C: & \text{Es wird keine rote Kugel gezogen.} && \rightarrow && C=\{b,b\} \\ D: & \text{Es wird genau eine blaue Kugel gezogen.} && \rightarrow && D=\{\{b,r\},\{r,b\}\} \\ \\ \end{array} $
Nun können wir unter Verwendung der ersten Pfadregel alle Elementarereignisse berechnen. Wir erhalten dann:
$ \begin{array}{llll} P(\{b,b\}) & \frac 58\cdot\frac 47 &=& \frac 5{14} \\ P(\{b,r\}) & \frac 58\cdot\frac 37 &=& \frac {15}{56} \\ P(\{r,b\}) & \frac 38\cdot\frac 57 &=& \frac {15}{56} \\ P(\{r,r\}) & \frac 38\cdot\frac 27 &=& \frac 3{28} \end{array} $
Jetzt können wir die Wahrscheinlichkeiten der gegebenen Ereignisse bestimmen. Hierzu wenden wir die zweite Pfadregel an:
$ \begin{array}{llllll} P(A) &=& P(\{b,r\},\{r,b\},\{r,r\}) &=& \frac {15}{56}+ \frac {15}{56}+\frac 3{28} &=& \frac 9{14} \\ P(B) &=& P(\{b,b\},\{b,r\},\{r,b\}) &=& \frac 5{14}+ \frac {15}{56}+ \frac {15}{56} &=& \frac{25}{28} \\ P(C) &=& P(\{b,b\}) &=& \frac 5{14} && \\ P(D) &=& P(\{b,r\},\{r,b\}) &=& \frac {15}{56}+ \frac {15}{56} &=& \frac {15}{28} \end{array} $
-
Bestimme die totale Wahrscheinlichkeit.
TippsErstelle dir ein Baumdiagramm und beschrifte die Pfade mit den jeweiligen Wahrscheinlichkeiten. Verwende hierzu Dezimalzahlen, sodass du ohne Prozentzeichen rechnen kannst.
Es gilt zum Beispiel $15~\%=\frac {15}{100}=0,15$.
Beachte, dass du das Ergebnis dann wieder in Prozent umrechnen musst.
$\overline A$ ist das Gegenereignis zu $A$. Die Gegenwahrscheinlichkeit erhältst du über $P(\overline A)=1-P(A)$.
Der Satz der totalen Wahrscheinlichkeit für zwei Ereignisse $A$ und $B$ lautet allgemein:
$P(B)=P(A\cap B)+P(\overline A\cap B)$
Laut der 1. Pfadregel gilt:
$P(A\cap B)=P(A)\cdot P(B\vert A)$
LösungDiese Angaben sind uns bekannt:
- Gruppe $C$ entspricht $65$ Prozent der Gesamtschüler*innen.
- Gruppe $C$ stimmt mit $55$ Prozent für Lena.
- Gruppe $\overline C$ stimmt mit $70$ Prozent für Lena.
- $P(C)=0,65$
- $P(L\vert C)=0,55$
- $P(L\vert \overline C)=0,7$
- $P(\overline C)=1-0,65=0,35$
- $P(\overline L\vert C)=1-0,55=0,45$
- $P(\overline L\vert \overline C)=1-0,7=0,3$
Das zutreffende Baumdiagramm ist hier abgebildet. Nun können wir die gesuchte Wahrscheinlichkeit $P(L)$ berechnen:
$P(L)=P(C\cap L)+P(\overline C\cap L)=0,65\cdot 0,55+0,35\cdot 0,7=0,6025=60,25\%$
-
Ergänze das gegebene Baumdiagramm.
TippsDie fehlenden Wahrscheinlichkeiten entsprechen den Wahrscheinlichkeiten der jeweiligen Gegenereignisse.
Die Wahrscheinlichkeit eines Gegenereignisses ist die sogenannte Gegenwahrscheinlichkeit. Sie wird wie folgt bestimmt:
$P(\overline S)=1-P(S)$
Die Gegenwahrscheinlichkeit zu $P(M\vert S)$ ist $P(\overline M\vert S)$.
LösungHier dargestellt ist das vollständige Baumdiagramm. Die fehlenden Wahrscheinlichkeiten entsprechen den Wahrscheinlichkeiten der jeweiligen Gegenereignisse.
Die Wahrscheinlichkeit eines Gegenereignisses ist die sogenannte Gegenwahrscheinlichkeit. Wir erhalten diese wie folgt:
$ \begin{array}{lllll} P(\overline S) &=& 1-P(S) &=& 1-0,97 &=& 0,03\\ P(M\vert S) &=& 1-P(\overline M\vert S) &=& 1-0,7 &=& 0,3\\ P(\overline M\vert\overline S) &=& 1-P(M\vert\overline S) &=& 1-0,56 &=& 0,44 \end{array} $
-
Ermittle die bedingte Wahrscheinlichkeit.
TippsDie 1. Pfadregel besagt, dass die Wahrscheinlichkeit eines Elementarereignisses aus der Multiplikation der Wahrscheinlichkeiten des zugehörigen Pfades resultiert.
Beachte, dass die Wahrscheinlichkeiten nicht in Prozent gefragt sind.
LösungFolgende Angaben sind uns bekannt:
- An Station $A$ haben sich $25$ Prozent der Schüler*innen versammelt.
- Mit einer Wahrscheinlichkeit von $11,25$ Prozent ist ein Schüler bzw. eine Schülerin an Station $A$ UND nimmt den Doppeldecker $D$.
- $P(A)= 0,25$
- $P(A\cap D)= 0,1125$
$ \begin{array}{lllll} P(A\cap D) &=& P(A)\cdot P(D\vert A) && \vert :P(A) \\ \frac{P(A\cap D)}{P(A)} &=& P(D\vert A) && \end{array} $
Wir setzen ein und es folgt die Lösung:
$P(D\vert A)=\frac{0,1125}{0,25}=0,45$
8.868
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.388
Lernvideos
36.069
Übungen
32.624
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel
Könnt ihr so ein Video vielleicht auch zur stochastischen Abhängigkeit und Unabhängigkeit machen?
Das wäre toll!
Tolles Video! Ich hab es direkt verstanden.