Berechnungen an Dreiecken
Viele Aufgaben in der Geometrie drehen sich um Dreiecke. Hier siehst du die wesentlichen Aufgaben dazu.
Beliebteste Videos und Übungen in Berechnungen an Dreiecken
Beliebteste Videos in Berechnungen an Dreiecken
Jetzt mit Spaß die Noten verbessern
und sofort Zugriff auf alle Inhalte erhalten!
30 Tage kostenlos testenAlle Themen in Berechnungen an Dreiecken
- Winkelsummen von Dreiecken
- Dreiecke mit den Kongruenzsätzen konstruieren
- Mittelsenkrechte, Winkelhalbierende und Seitenhalbierende konstruieren
- Höhen, Inkreis und Umkreis von Dreiecken
- Flächeninhalt und Umfang von Dreiecken
- Satz des Thales
- Satz des Pythagoras
- Kathetensatz und Höhensatz
- Sinus, Cosinus und Tangens im rechtwinkligen Dreieck (Trigonometrie)
- Sinussatz und Cosinussatz
- Gleichseitiges Dreieck – Wie kannst du es erkennen?
Themenübersicht in Berechnungen an Dreiecken
Dreiecke
Eine der ersten ebenen Figuren, die du kennenlernst, ist das Dreieck. Wie der Name schon sagt, hat es drei Ecken bzw. Eckpunkte. Diese werden mit drei Strecken (den Seiten) verbunden, wodurch drei Winkel entstehen.
In allen Dreiecken gilt für den Umfang $u=a+b+c$. Außerdem gilt für die Winkelsumme von Dreiecken, dass diese $180^\circ$ beträgt. Es gilt also $\alpha+\beta+\gamma=180^\circ$.
Wenn du von einer Ecke des Dreiecks das Lot auf die gegenüberliegende Seite fällst, erhältst du eine Höhe des Dreiecks.
Mit Hilfe der Höhe kannst du den Flächeninhalt eines Dreiecks berechnen. Es gilt $A=\frac12\cdot c\cdot h_c$. Du kannst diese Formel mit jeder der beiden anderen Seiten und der entsprechenden Höhe ebenso formulieren:
$A=\frac12\cdot a\cdot h_a$ sowie $A=\frac12\cdot b\cdot h_b$.
Die drei Mittelsenkrechten eines Dreiecks schneiden sich in einem Punkt. Dies ist der Mittelpunkt des Umkreises des Dreiecks.
Die drei Winkelhalbierenden eines Dreiecks schneiden sich in einem Punkt. Dies ist der Mittelpunkt des Inkreises des Dreiecks.
Die Satzgruppe des Pythagoras
In rechtwinkligen Dreiecken gelten die Sätze aus der Satzgruppe des Pythagoras. Was ist ein rechtwinkliges Dreieck? In einem rechtwinkligen Dreieck beträgt einer der drei Winkel $90^\circ$. Die Seite, die dem rechen Winkel gegenüber liegt, ist die Hypotenuse $c$. Die beiden anderen Seiten $a$ und $b$ werden Katheten genannt.
Der Satz des Pythagoras besagt, dass die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat ist. Es gilt:
$a^{2}+b^{2}=c^{2}$.
Die Höhe $h_{c}$ teilt die Hypotenuse $c$ in die Hypotenusenabschnitte $p$ und $q$.
Es gilt der Kathetensatz des Euklid:
$a^{2}=c\cdot q$ und $b^{2}=c\cdot p$.
Auf der rechten Seite steht jeweils das Produkt der Hypotenuse und des der Kathete entsprechenden Hypotenusenabschnittes.
Außerdem gilt auch der Höhensatz des Euklid. Die Gleichung lautet $h^{2}=p\cdot q$.
Der Satz des Thales
Der Satz des Thales besagt: Für jeden Punkt $C$ (außer $A$ und $B$) auf dem Halbkreis über der Strecke $\overline{AB}$ gilt, dass das Dreieck $\Delta_{ABC}$ rechtwinklig ist. Der rechte Winkel liegt dabei in $C$.
Du kannst Dreiecke auch im Koordinatensystem betrachten. Wenn in den Koordinaten der Eckpunkte eines Dreiecks ein Parameter vorhanden ist, spricht man von einer Dreiecksschar.
Sinus, Cosinus und Tangens
Die trigonometrischen Funktionen Sinus, Cosinus und Tangens sind im rechtwinkligen Dreieck definiert. Zum besseren Verständnis kann man diese auch im Einheitskreis betrachten.
Es gelten folgende Gleichungen:
- $\sin(\alpha)=\frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$,
- $\cos(\alpha)=\frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}}$,
- $\tan(\alpha)=\frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha}$.
Mit Hilfe dieser Definitionen kannst du Anwendungsaufgaben der Trigonometrie bearbeiten.
Sinussatz und Cosinussatz
Um fehlende Seiten oder Winkel von Dreiecken zu berechnen, kannst du den Sinus- oder Cosinussatz verwenden. Diese beiden Sätze gelten nicht nur in rechtwinkligen, sondern in beliebigen Dreiecken.
Der Sinussatz beschreibt eine Beziehung zwischen den Winkeln eines Dreiecks zu den gegenüberliegenden Seiten:
$\large{\frac{a}{\sin(\alpha)}=\frac{b}{\sin(\beta)}=\frac{c}{\sin(\gamma)}}$
Der Cosinussatz ist ein verallgemeinerter Satz des Pythagoras. Es gelten die folgenden drei Gleichungen:
- $a^{2}=b^{2}+c^{2}-2\cdot b\cdot c\cdot \cos(\alpha)$,
- $b^{2}=a^{2}+c^{2}-2\cdot a\cdot c\cdot \cos(\beta)$,
- $c^{2}=a^{2}+b^{2}-2\cdot a\cdot b\cdot \cos(\gamma)$.
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel