Quadratische Ungleichungen graphisch lösen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Quadratische Ungleichungen graphisch lösen
Nach dem Schauen dieses Videos wirst du in der Lage sein, quadratische Ungleichungen graphisch zu lösen.
Zunächst lernst du, wie du eine quadratische Ungleichung in eine quadratische Funktion überführen und für diese eine Wertetabelle erstellen kannst. Anschließend siehst du, wie du ausgehend von einer Wertetabelle den zugehörigen Graphen zeichnen kannst. Abschließend lernst du, wie du dem Graphen die Nullstellen entnehmen und mit Hilfe dieser und des Relationszeichens die Lösungsmenge der quadratischen Ungleichung angeben kannst.
Lerne, wie du quadratische Ungleichungen graphisch lösen kannst, indem du Jakob und Piers dabei hilfst, nicht erwischt zu werden.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie quadratische Ungleichung, quadratische Funktion, Nullstelle, Grenzen der Lösungsmenge, Relationszeichen, Graph, Funktionsgraph, leere Menge, eine Lösung und keine Lösung.
Bevor du dieses Video schaust, solltest du bereits wissen, wie du quadratische Funktionen zeichnest.
Nach diesem Video wirst du darauf vorbereitet sein, das rechnerische Lösen quadratischer Ungleichungen zu lernen.
Transkript Quadratische Ungleichungen graphisch lösen
Das sind Jakob und Piers. Die beiden Jungs wollen im Hof Fußball spielen oh, das ist eigentlich verboten. Und Herr Murrer, der mürrische Nachbar, achtet pingelig auf alle Regeln im Haus. Die ganze Zeit schon steht er unbeweglich an seinem Fenster im dritten Stock und guckt. Auf keinen Fall dürfen die Jungs also höher als sein Fensterbrett schießen. Die Flugbahn des Fußballs lässt sich als Graph einer quadratischen Funktion beschreiben. Es stellt sich aber die Frage: Für welche x-Werte liegen die Funktionswerte oberhalb einer Grenze? "Das können wir herausbekommen, indem wir Quadratische Ungleichungen graphisch lösen". Schlecht für unsere Fußballer wäre es, wenn der Ball oberhalb des Fensterbretts auftaucht. Wir haben das Koordinatensystem so vor das Gebäude gesetzt, dass die x-Achse auf Höhe des Fensterbretts verläuft. Jakob schießt. Die Flugbahn wird durch diese Funktion beschrieben. Der kritische Bereich liegt oberhalb der x-Achse. Deshalb suchen wir diejenigen Werte der Funktion, die größer sind als 0: Also betrachten wir diese Ungleichung. Wir stellen eine Wertetabelle zur Flugbahn auf. Mit Hilfe dieser Wertetabelle zeichnen wir den Graphen zur Funktion. Wir können sehen, dass die Parabel niemals oberhalb der x-Achse verläuft. Die Lösungsmenge bleibt daher leer. Glück gehabt! Der Ball kommt Herrn Murrer zwar gefährlich nahe, erreicht das Fensterbrett aber nicht. Jetzt schießt Piers! Mit der Funktion zu dieser Flugbahn stellen wir diese Ungleichung auf und erstellen wieder eine Wertetabelle. Wieder liegen oberhalb der x-Achse keine Werte. Diesmal berührt der Graph die x-Achse aber genau einmal, nämlich bei x gleich 5. Nun musst du sehr genau das Vergleichszeichen beachten. Hier steht ein 'Größer-gleich-Zeichen'. Bei solchen Ungleichungen gehören auch die Nullstellen zur Lösungsmenge. Und deshalb hat diese Ungleichung genau eine Lösung, nämlich die Nullstelle. Und der Fußball? Es kommt, wie es kommen musste. Oh nein! Hm, seltsam, keine Reaktion. Na gut, dann kann Jakob ja noch einmal schießen. Aus der Flugbahn ergibt sich eine neue Funktion, zu der wir ebenfalls eine Wertetabelle erstellen. Diesmal haben wir zwei Nullstellen gefunden, nämlich x1 gleich 4 und x2 gleich 5. Die Punkte zwischen den Nullstellen liegen alle oberhalb der x-Achse. Sie sind also größer als Null. Die Lösungsmenge der zugehörigen Ungleichung umfasst also alle Zahlen zwischen 4 und 5. Das Vergleichszeichen ist außerdem ein größer-gleich-Zeichen. Also gehören auch die Nullstellen zur Lösungsmenge und das schreiben wir so. Wir fassen zusammen: Um eine quadratische Ungleichung graphisch zu lösen, kannst du die Wertetabelle der zugehörigen quadratischen Funktion aufstellen. Mit den Wertepaaren kannst du nun den Graphen zeichnen und die Nullstellen ermitteln. Diese sind die Grenzen der Lösungsmenge. Prüfe anhand des Vergleichszeichens, ob auch die Nullstellen selbst zur Lösungsmenge gehören oder nicht. Aber wie reagiert nun Herr Murrer? Oh, das ist ja gar nicht der echte Murrer? Hm, aber wo ist er dann? Ach, da oben in Stockwerk vier macht er Urlaub auf Balkonien und liest sein Lieblingsbuch: "Kicken - warum es unsere Jugend verdirbt."
Quadratische Ungleichungen graphisch lösen Übung
-
Beschreibe die Vorgehensweise beim graphischen Lösen quadratischer Ungleichungen.
-
Bestimme die graphischen Lösungen der Ungleichungen.
-
Entscheide, welche der Aussagen korrekt sind.
-
Ermittle die Lösungsmenge der Ungleichungen graphisch.
-
Bestimme die korrekten Aussagen zum graphischen Lösen von Ungleichungen.
-
Erschließe den Lösungsraum der quadratischen Ungleichung rechnerisch.
9.152
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.600
Lernvideos
35.593
Übungen
32.336
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal