Division von Potenzen – Einführung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Division von Potenzen – Einführung
Nach dem Schauen dieses Videos wirst du in der Lage sein, die Division von Potenzen durchzuführen.
Zunächst lernst du das Gesetz zur Division von Potenzen kennen. Anschließend lernst du, wie du die Bruchrechnung bei der Division von Potenzen verwenden kannst. Abschließend lernst du, wie du auch kompliziertere Ausdrucke mithilfe der Division von Potenzen vereinfachen kannst.
Lerne etwas über die Division von Potenzen, indem du die Briefmarkensammlungen der beiden Freunde Morton und Manfred vergleichst.
Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Potenzen, Exponent, Basis, Bruch, Vereinfachen und Division von Potenzen.
Bevor du dieses Video schaust, solltest du bereits wissen, was eine Potenz ist und wie du mit Brüchen rechnest.
Transkript Division von Potenzen – Einführung
Endlich Samstagabend. Morten wartet im Keller seiner Mutti auf seinen Freund und Rivalen Manfred. Da ist er ja schon. Zeit, ein für alle Mal festzustellen, wer der Meister ist in der königlichen, altehrwürdigen Disziplin des Briefmarkensammelns. Wie vergleicht man eine Briefmarkensammlung? Der Sammler mit den wertvollsten Briefmarken gewinnt. Zuerst sortieren die beiden ihre Sammlungen dann entfernen sie gleiche Briefmarken. Gleiche Briefmarken zu sortieren und zu entfernen ähnelt einem mathematischen Gesetz, das wir nutzen können, wenn wir uns mit der Division von Potenzen beschäftigen. Schauen wir uns mal an, wie sie das mit ihren Briefmarkensammlungen machen. Jede Axolotl-Briefmarke wird durch den Buchstaben a repräsentiert. Für Barsch-Briefmarken nutzen wir den Buchstaben b. Und für Clownfisch-Briefmarken den Buchstaben c. Siehst du, wie sich gleiche Variablen kürzen lassen? Beim Gesetz der Division von Potenzen bleibt die Basis gleich. Dann subtrahieren wir einfach vom Exponenten des Zählers den Exponenten des Nenners. Nicht vergessen, das klappt nur, wenn die Basis gleich ist. Basis nennt man die Zahl oder die Variable, die mit sich selbst multipliziert wird. Der Exponent ist die kleine Zahl oder Variable oben rechts, die uns sagt, wie oft die Basis mit sich selbst multipliziert wird. Jede Potenz mit dem Exponenten 1 ist gleich ihrer Basis. Schauen wir uns folgende Aufgabe an. Wie bei den Briefmarken können wir gleiche Variablen kürzen. Der vereinfachte Ausdruck ist gleich a. Vereinfachen wir den Ausdruck nochmal, mit dem Gesetz der Division von Potenzen. Bei gleicher Basis a können wir vom Exponenten des Zählers den Exponenten des Nenners subtrahieren. Wir erhalten also: a hoch 2 minus 1. Das ist gleich a hoch 1 oder einfach a. Vereinfachen wir noch einen Ausdruck mit dem Gesetz der Division von Potenzen. Zuerst schreiben wir den Ausdruck in Form eines Bruchs. Nicht vergessen, der Bruchstrich ist ein mathematisches Zeichen, das ebenfalls eine Division anzeigt. Um die Rechnung zu vereinfachen, sortieren wir die Gleichung, sodass gleichartige Ausdrücke zusammenstehen. Bei gleicher Basis können wir nun vom Exponenten des Zählers den Exponenten des Nenners subtrahieren. Und noch eine Aufgabe. Oh, das sieht aber kompliziert aus. Ach was, das bekommen wir hin! Immer schön die mathematischen Gesetze benutzen. Wenn wir durch einen Bruch teilen, multiplizieren wir mit dessen Kehrwert. Um den Kehrwert zu finden, musst du bloß den Zähler und den Nenner vertauschen. Dann multiplizierst du zuerst die beiden Zähler und dann die beiden Nenner. Dann zerlegst du Zähler und Nenner in gleichartige Brüche. Koeffizienten zu Koeffizienten. x zu x. y zu y. Und zuletzt wendest du das Gesetz der Division von Potenzen an. Lass uns noch rasch zusammenfassen. Das Potenzgesetz der Division von Potenzen mit gleicher Basis lautet: a hoch m durch a hoch n ist gleich a hoch 'm minus n'. Wenn du also zwei Potenzen mit gleicher Basis dividierst, entspricht das einer Potenz mit dem Exponenten "Zählerexponent minus Nennerexponent". Dabei darf übrigens die Basis niemals gleich 0 sein – sonst würdest du ja durch 0 teilen, und das ist verboten! Zurück zu unseren beiden Briefmarkenwettkämpfern. Der Wettkampf bleibt bis zur letzten Minute spannend, aber Morten hat noch ein Ass im Ärmel. Er holt seine wertvollste Briefmarke hervor. Den Roten Hummer. Oh nein!
Division von Potenzen – Einführung Übung
9.172
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.600
Lernvideos
35.587
Übungen
32.330
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- orthogonal
Das Video ist korreckt
Das Video ist sehr lustig und verständlich erklärt. Ich habe es danach gleich verstanden und hatte in der nächsten Prüfung eine 2
moin
sehr verständlich erklärt :)
hihi haha