Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gleichungen mit Sinus, Cosinus und Tangens mit zwei Winkelfunktionen verschiedener Argumente

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Trigonometrie Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.6 / 9 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Gleichungen mit Sinus, Cosinus und Tangens mit zwei Winkelfunktionen verschiedener Argumente
lernst du in der Oberstufe 5. Klasse - 6. Klasse

Grundlagen zum Thema Gleichungen mit Sinus, Cosinus und Tangens mit zwei Winkelfunktionen verschiedener Argumente

Hallo und herzlich willkommen! In diesem Video lernst du ein Verfahren kennen, mit dem man trigonometrische Gleichungen mit zwei Winkelfunktionen unterschiedlicher Argumente lösen kann.Du wirst sehen, dass dieses Verfahren aus den 3 einfachen Schritten "Gleichung vereinfachen", "Gleichung lösen" und "Probe machen" besteht. Zusammen werden wir uns das alles an einem Beispiel anschauen und durchrechnen. Viel Spaß!

Gleichungen mit Sinus, Cosinus und Tangens mit zwei Winkelfunktionen verschiedener Argumente Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gleichungen mit Sinus, Cosinus und Tangens mit zwei Winkelfunktionen verschiedener Argumente kannst du es wiederholen und üben.
  • Bestimme die richtigen Aussagen zur trigonometrischen Gleichung $\cos(x)-\sin\left(\frac{x}{2}\right)=0$.

    Tipps

    Es gilt die Gleichheit:

    Der Kosinus von $180°$ ist $-1$ und der Sinus von $90°$ ist $0$. Also ist

    $\begin{align*} \cos(180°)-\sin(90°)=-1-0=-1\neq 0. \end{align*}$

    In der trigonometrischen Gleichung $\cos^2(x)-3\cos(x)-1=0$ kann man $z=\cos(x)$ substituieren, womit die quadratische Gleichung $z^2-3z-1=0$ entsteht. Hierbei ist dann $p=-3$ und $q=-1$.

    Lösung

    Wir gehen jede Aussage einzeln durch.

    1. „Für die Lösung der Gleichung kann man nur $\cos(2x)=2\cos^2(x)-1$ nutzen.“ Neben der Beziehung $\cos(2x)=2\cos^2(x)-1$ gilt außerdem $\cos(2x)=1-2\sin^2(x)$. Beide Gleichungen gelten für alle $x\in\mathbb{R}$, weshalb also auch insbesondere $\cos(x)=\cos\left(2\cdot\frac{x}{2}\right)=1-2\sin^2\left(\frac{x}{2}\right)$ ist. Somit lässt sich die Gleichung zu $1-2\sin^2\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)=0$ umformen. Dies ist eine trigonometrische Gleichung, welche als höchste Potenz die $2$ besitzt. Diese Gleichung können wir also weiter lösen. Wir haben die Gleichung $\cos(2x)=2\cos^2(x)-1$ in unseren Schritten nicht benutzt, weshalb die Aussage falsch ist.
    2. „Die Gleichung ist äquivalent zu $1-2\sin^2\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)=0$.“ In 1. haben wir mit Hilfe der Beziehung $\cos(2x)=1-2\sin^2(x)$ gezeigt, dass folgende Äquivalenz gilt: $\cos(x)-\sin\left(\frac{x}{2}\right)=0 ~\Leftrightarrow~ 1-2\sin^2\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)=0$. Die Aussage ist damit wahr.
    3. „Die Lösungen der Gleichung sind $60°$ und $180°$.“ Diese Aussage ist falsch, denn es ist $\cos(180°)-\sin\left(\frac{180°}{2}\right)=\cos(180°)-\sin(90°)=-1-0=-1\neq 0$.
    4. „Die Gleichung $-2\sin^2\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)+1=0$ kann man mit einer Substitution und anschließender Verwendung der $p$-$q$-Formel lösen.“ Man kann $\sin\left(\frac{x}{2}\right)$ durch $z$ ersetzen bzw. substituieren. Dann ist also $z=\sin\left(\frac{x}{2}\right)$ und $z^2=\sin^2\left(\frac{x}{2}\right)$, womit die quadratische Gleichung $-2z^2-z+1=0$ folgt, die man nach Division durch $-2$ mit der $p$-$q$-Formel lösen kann. Die Aussage ist also wahr.
    5. „Aus $\sin\left(\frac{x}{2}\right)=\frac{1}{2}$ folgt $\frac{x}{2}=\arcsin\left(\frac{1}{2}\right)=30°$.“ Wenn wir die Gleichung $\sin\left(\frac{x}{2}\right)=\frac{1}{2}$ betrachten und auf beiden Seiten den $\arcsin$ bilden, dann folgt $\frac{x}{2}=\arcsin\left(\frac{1}{2}\right)$. Der Taschenrechner ermittelt für $\arcsin\left(\frac{1}{2}\right)$ einen Wert von $30°$, weshalb wir auch gleich etwas kompakter $\frac{x}{2}=\arcsin\left(\frac{1}{2}\right)=30°$ schreiben können. Die Aussage ist damit wahr.
  • Gib die Schritte zur Lösung der Gleichung $\cos(x)-\sin\left(\frac{x}{2}\right)=0$ an.

    Tipps

    Die beiden Gleichungen liefern dir $\begin{align}\cos(x)=1-2\sin^2\left(\frac{x}{2}\right)\end{align}$, womit du den Kosinus mit Hilfe des Sinus dargestellt hast.

    Ein Produkt ist Null, wenn einer der beiden Faktoren Null ist. Die Werte für $z$, die die quadratische Gleichung $-2z^2-z+1=0$ erfüllen, kann man daher leicht ablesen, denn es gilt:

    Hat man bspw. $z=\sin\left(\frac{x}{3}\right)$ substituiert und $z=1$ berechnet, dann ist $\sin\left(\frac{x}{3}\right)=1$ und für $x$ folgt $\frac{x}{3}=\arcsin(1)=90^\circ$. Daher ist $x=270^\circ$.

    Lösung

    Wenn wir die trigonometrische Gleichung lösen wollen, dann formen wir diese zunächst so um, dass nur eine Winkelfunktion vorhanden ist. Hierfür können wir die Gleichung $\cos(2x)=1-2\sin^2(x)$ nutzen. Es gilt außerdem $\cos(x)=\cos\left(2\cdot\frac{x}{2}\right)$, womit insgesamt $\cos(x)=1-2\sin^2\left(\frac{x}{2}\right)$ folgt.

    Den Term für $\cos(x)$ setzen wir in die Ausgangsgleichung ein. Es folgt damit $1-2\sin^2\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)=0$. Wir ordnen die linke Seite der Gleichung nach der höchsten Potenz und erhalten damit $-2\sin^2\left(\frac{x}{2}\right)-\sin\left(\frac{x}{2}\right)+1=0$.

    Jetzt können wir eine Substitution durchführen, d.h. wir setzen $z=\sin\left(\frac{x}{2}\right)$ und dementsprechend ist $z^2=\sin^2\left(\frac{x}{2}\right)$. Folglich erhalten wir die quadratische Gleichung $-2z^2-z+1=0$. Dividieren wir auf beiden Seiten durch $-2$, dann ergibt sich die Gleichung $z^2+\frac{1}{2}z-\frac{1}{2}=0$. Dabei ist $p=\frac{1}{2}$ und $q=-\frac{1}{2}$.

    Mit Hilfe der $p$-$q$-Formel erhält man dann:

    $\begin{align}z_{1,2}&=-\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}\\&=-\frac{1}{4}\pm\sqrt{\frac{1}{16}+\frac{1}{2}}\\&=-\frac{1}{4}\pm\sqrt{\frac{9}{16}}\\&=-\frac{1}{4}\pm\frac{3}{4}.\end{align}$

    Somit ergeben sich $z_1=\frac{1}{2}$ und $z_2=-1$.

    Jetzt müssen wir noch die Rücksubstitution durchführen. Wir erhalten $\sin\left(\frac{x_1}{2}\right)=\frac{1}{2}$ oder $\sin\left(\frac{x_2}{2}\right)=-1$. Bilden wir den $\arcsin$, dann folgen $\frac{x_1}{2}=\arcsin\left(\frac{1}{2}\right)=30°$ oder $\frac{x_2}{2}=\arcsin(-1)=-90°$. Nach Multiplikation mit $2$ auf beiden Seiten folgen somit $x_1=60°$ oder $x_2=-180°$.

    Die Probe führt mit $\cos(60°)-\sin\left(\frac{60°}{2}\right)=\cos(60°)-\sin(30°)=0{,}5-0{,}5=0$ und $\cos(-180°)-\sin\left(\frac{-180°}{2}\right)=\cos(-180°)-\sin(-90°)=-1-(-1)=0$ außerdem zu wahren Aussagen.

  • Ermittle die Lösungen der dargestellten trigonometrischen Gleichung.

    Tipps

    Aus der Beziehung $\cos(2x)=2\cos^2(x)-1$ kannst du $\cos\left(\frac{x}{4}\right)=2\cos^2\left(\frac{x}{8}\right)-1$ folgern.

    Die trigonometrische Gleichung $3\sin^2\left(\frac{x}{3}\right)-1+3\sin\left(\frac{x}{3}\right)+1=0$ können wir vereinfachen.

    Willst du $\cos\left(\frac{x}{2}\right)=0$ nach $x$ umstellen, dann bildest du zunächst auf beiden Seiten den $\arccos$. Dann entsteht $\frac{x}{2}=\arccos(0)$. Der Arkuskosinus von $0$ ist $90°$, d.h. nach der Multiplikation mit $2$ erhältst du $x=180°$.

    Lösung

    Wir wollen die angegebene trigonometrische Gleichung lösen.

    Im ersten Schritt müssen wir die Argumente des Kosinus gleich machen. Dafür verwenden wir die Beziehung $\cos(2x)=2\cos^2(x)-1$, denn wegen $\frac{x}{4}=2\cdot \frac{x}{8}$ gilt somit für den ersten Summanden $\cos\left(\frac{x}{4}\right)$:

    $\begin{align} \cos\left(\frac{x}{4}\right)=\left(2\cdot \frac{x}{8}\right)=2\cos^2\left(\frac{x}{8}\right)-1. \end{align}$

    Unsere Ausgangsgleichung können wir daher zu

    $\begin{align} 2\cos^2\left(\frac{x}{8}\right)-1+2\cos\left(\frac{x}{8}\right)+1=0 \end{align}$

    umformen. Die $-1$ und $+1$ heben sich gegenseitig auf, womit

    $\begin{align} 2\cos^2\left(\frac{x}{8}\right)+2\cos\left(\frac{x}{8}\right)=0 \end{align}$

    übrig bleibt. Dividieren wir auf beiden Seiten der Gleichung durch $2$, dann ergibt sich

    $\begin{align} \cos^2\left(\frac{x}{8}\right)+\cos\left(\frac{x}{8}\right)=0. \end{align}$

    Jetzt klammern wir auf der linken Seite der Gleichung den Term $\cos\left(\frac{x}{8}\right)$ aus und es entsteht das Produkt

    $\begin{align} \cos\left(\frac{x}{8}\right)\cdot\left(\cos\left(\frac{x}{8}\right)+1\right)=0. \end{align}$

    Ein Produkt ist bekanntlich Null, wenn einer der beiden Faktoren Null ist. Konkret für diesen Fall bedeutet das also, dass $\cos\left(\frac{x}{8}\right)=0$ oder $\cos\left(\frac{x}{8}\right)=-1$ betrachtet werden muss. Um beiden trigonometrischen Gleichungen lösen zu können, muss auf beiden Seiten der Gleichungen der Arkuskosinus angewendet werden. Somit erhalten wir $\frac{x}{8}=\arccos(0)$ oder $\frac{x}{8}=\arccos(-1)$. Die Werte für $\arccos(0)$ oder $\arccos(-1)$ lassen sich mit einem Taschenrechner leicht ermitteln. Ist die Anzeige auf Grad eingestellt, dann ergeben sich $\frac{x}{8}=90°$ oder $\frac{x}{8}=180°$. Im letzten Schritt muss nur noch mit $8$ auf beiden Seiten multipliziert werden. Die Lösungen der trigonometrischen Gleichung lauten $x_1=720°$ oder $x_2=1440°$.

    Eine Probe liefert mit

    $\begin{align} \cos\left(\frac{720°}{4}\right)+2\cos\left(\frac{720°}{8}\right)+1&=\cos(180°)+2\cos(90°)+1\\&=-1+2\cdot 0+1=0 \end{align}$

    und

    $\begin{align} \cos\left(\frac{1440°}{4}\right)+2\cos\left(\frac{1440°}{8}\right)+1&=\cos(360°)+2\cos(180°)+1\\&=1+2\cdot (-1)+1=2-2=0 \end{align}$

    zwei wahre Aussagen.

  • Bestimme die Lösungsmenge der trigonometrischen Gleichung.

    Tipps

    Wegen $x=2\cdot \frac{x}{2}$ gilt die Beziehung $\cos(x)=\cos\left(2\cdot \frac{x}{2}\right)=\cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)$.

    Die Gleichungen $\sin^2(x)=0$ oder $\cos^2(x)=0$ sind äquivalent, d.h. gleichwertig zu $\sin(x)=0$ bzw. $\cos(x)=0$.

    Es kann hilfreich sein, einen Term in zwei Teile aufzuspalten. Zum Beispiel ist es sinnvoll, $-2\sin^2(x)$ als $-\sin^2(x)-\sin^2(x)$ zu schreiben.

    Die Gleichung $\tan^4(x)+6\cdot \tan^2(x)=0$ ist äquivalent zu $\tan^2(x)\cdot(\tan^2(x)+6)=0$. Die Lösungen dieser trigonometrischen Gleichung ergeben sich also aus $\tan^2(x)=0$ oder $\tan^2(x)=-6$.

    Lösung

    Wir wollen die trigonometrische Gleichung $\cos(x)+\sin^2\left(\frac{x}{2}\right)=0$ lösen.

    Wir müssen eine geeignete Winkelbeziehung des Kosinus verwenden, sodass nur noch eine trigonometrische Funktion in der Gleichung mit dem gleichen Argument vorkommt. In diesem Fall wird uns die Beziehung $\cos(x)=\cos\left(2\cdot\frac{x}{2}\right)=\cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)$ helfen, denn damit ergibt sich:

    $\begin{align} \cos(x)+\sin^2\left(\frac{x}{2}\right)=0 ~~&\Longleftrightarrow~~ \cos^2\left(\frac{x}{2}\right)-\sin^2\left(\frac{x}{2}\right)+\sin^2\left(\frac{x}{2}\right)=0\\ ~~&\Longleftrightarrow~~ \cos^2\left(\frac{x}{2}\right)=0\\ ~~&\Longleftrightarrow~~ \cos\left(\frac{x}{2}\right)=0\\ ~~&\Longleftrightarrow~~ \frac{x}{2}=\arccos(0)\\ ~~&\Longleftrightarrow~~ \frac{x}{2}=90°\\ ~~&\Longleftrightarrow~~ x=180°. \end{align}$

    Die Lösungsmenge der trigonometrischen Gleichung lautet demnach $\mathbb{L}=\{180°\}$.

    Eine Probe ergibt außerdem die wahre Aussage:

    $\begin{align} \cos(180°)+\sin^2\left(\frac{180°}{2}\right)=\cos(180°)+\sin^2\left(90°\right)=-1+1^2=0. \end{align}$

    Wir wollen dann die trigonometrische Gleichung $\cos^2(x)-\cos(2x)-2\sin^2(x)=0$ lösen.

    Für die Lösung werden wir verwenden, dass $-2\sin^2(x)=-\sin^2(x)-\sin^2(x)$ und $\cos(2x)=\cos^2(x)-\sin^2(x)$ ist:

    $\begin{align} \cos^2(x)-\cos(2x)-2\sin^2(x)=0 ~~&\Longleftrightarrow~~ \cos^2(x)-\sin^2(x)-\cos(2x)-\sin^2(x)=0\\ ~~&\Longleftrightarrow~~ \cos(2x)-\cos(2x)-\sin^2(x)=0\\ ~~&\Longleftrightarrow~~ \sin^2(x)=0\\ ~~&\Longleftrightarrow~~ \sin(x)=0\\ ~~&\Longleftrightarrow~~ x=\arcsin(0)\\ ~~&\Longleftrightarrow~~ x=0. \end{align}$

    Die Lösungsmenge der trigonometrischen Gleichung lautet demnach: $\mathbb{L}=\{0°\}$.

    Eine Probe ergibt außerdem die wahre Aussage:

    $\begin{align} \cos^2(0°)-\cos(2\cdot 0°)-2\sin^2(0°)=1-1-2\cdot 0=0. \end{align}$

    Letztlich wollen wir die Lösungsmenge von $\cos(2x)-\tan^2(x)=1$ bestimmen.

    Aufgrund des Auftretens des Tangens ist es günstig die Beziehung $\cos(2x)=\frac{1-\tan^2(x)}{1+\tan^2(x)}$ zu verwenden. Wir erhalten dann nämlich:

    $\begin{align} \cos(2x)-\tan^2(x)=1 ~~&\Longleftrightarrow~~ \frac{1-\tan^2(x)}{1+\tan^2(x)}-\tan^2(x)=1\\ ~~&\Longleftrightarrow~~ \frac{1-\tan^2(x)}{1+\tan^2(x)}=1+\tan^2(x)\\ ~~&\Longleftrightarrow~~ 1-\tan^2(x)=\left(1+\tan^2(x)\right)^2\\ ~~&\Longleftrightarrow~~ 1-\tan^2(x)=1+2\tan^2(x)+\tan^4(x)\\ ~~&\Longleftrightarrow~~ 3\tan^2(x)+\tan^4(x)=0\\ ~~&\Longleftrightarrow~~ \tan^2(x)\cdot\left(3+\tan^2(x)\right)=0.\\ \end{align}$

    Hieraus ergibt sich, dass die Lösungen aus $\tan^2(x)=0$ oder $\tan^2(x)=-3$ folgen. Da ein Quadrat nicht negativ werden kann, entfällt die Gleichung $\tan^2(x)=-3$. Die Gleichung $\tan^2(x)=0$ besitzt als Lösung nur $x=0$. Die Lösungsmenge der trigonometrischen Gleichung ist somit: $\mathbb{L}=\{0°\}$.

    Eine Probe ergibt außerdem die wahre Aussage:

    $\begin{align} \cos(2\cdot 0°)-\tan^2(0°)=1-0=1. \end{align}$

  • Bestimme die richtigen Paare.

    Tipps

    In der Gleichung $\cos^2(x)+2\cos(x)=3$ kann man $\cos(x)$ durch bspw. $z$ ersetzen bzw. substituieren. Man erhält dann: $z^2+2z=3$.

    Mit Hilfe der beiden Gleichungen kannst du eine weitere Gesetzmäßigkeit für den Kosinus bzw. für $\cos(x)$ aufstellen.

    Lösung

    1. Wir betrachten als Erstes die Gleichung $\sin^2\left(\frac{x}{2}\right)+\frac{1}{2}\sin\left(\frac{x}{2}\right)=\frac{1}{2}$. Dies ist eine trigonometrische Gleichung, die wir lösen können, wenn wir das Verfahren der Substitution anwenden. Hierfür setzen wir $z=\sin\left(\frac{x}{2}\right)$, womit $z^2+\frac{1}{2}z=\frac{1}{2}$ folgt.
    2. Aus dem Tafelwerk kannst du die Beziehung $\cos(2x)=1-2\sin^2(x)$ nachschlagen. Außerdem gilt: $\cos(x)=\cos\left(2\cdot\frac{x}{2}\right)$, womit insgesamt $\cos(x)=1-2\sin^2\left(\frac{x}{2}\right)$ gilt.
    3. Die Lösungen der trigonometrischen Gleichung $\cos(x)-\sin\left(\frac{x}{2}\right)=0$ sind $60°$ und $-180°$, denn es gilt: $\cos(60°)-\sin\left(\frac{60°}{2}\right)=\cos(60°)-\sin(30°)=0{,}5-0{,}5=0$ und $\cos(-180°)-\sin\left(\frac{-180°}{2}\right)=\cos(-180°)-\sin(-90°)=-1-(-1)=0$.
    4. Zum Schluss betrachten wir $\sin\left(\frac{x}{2}\right)=\frac{1}{2}$. Wenden wir auf beiden Seiten der Gleichung den $\arcsin$ an, dann erhalten wir $\frac{x}{2}=\arcsin\left(\frac{1}{2}\right)$. Der Taschenrechner ermittelt für $\arcsin\left(\frac{1}{2}\right)$ einen Wert von $30°$, weshalb wir auch gleich etwas kompakter $\frac{x}{2}=\arcsin\left(\frac{1}{2}\right)=30°$ schreiben können.
    Die Ausdrücke $2\sin^2\left(\frac{x}{2}\right)-1$ und $2z^2+z+1=0$ bleiben also ohne Zuordnung.

  • Arbeite die beiden Lösungen der trigonometrischen Gleichung heraus.

    Tipps

    In der nebenstehenden Gleichung kann man im zweiten Summanden die $3$ ausklammern und es ergibt sich $3\cdot\cos(x)+3\cdot \frac{1-\sin^2(x)}{1+\tan^2(x)}=3$. Anschließend dividiert man noch auf beiden Seiten durch $3$ und erhält:

    $\cos(x)+\frac{1-\sin^2(x)}{1+\tan^2(x)}=1$.

    Die Gleichung $\cos^2(x)-3\cos(x)+4=0$ lässt sich mit Hilfe einer Substitution von $\cos(x)=z$ lösen. Es ergibt sich dann $z^2-3z+4=0$ und diese quadratische Gleichung kann man mit der p-q - Formel lösen. Wenn du die Lösungen für $z_1$ und $z_2$ hast, dann musst du danach noch Resubstituieren.

    Wenn du die beiden Gleichungen nach $x_1$ bzw. $x_2$ umstellen möchtest, dann berechnest du dafür

    $x_1=\arcsin\left(\frac{1+\sqrt{3}}{7}\right)$ oder

    $x_2=\arcsin\left(\frac{1-\sqrt{3}}{7}\right)$

    Dafür kannst du dann einen Taschenrechner zur Hilfe nehmen.

    Lösung

    Wir wollen die nebenstehende trigonometrische Gleichung lösen.

    Zunächst fällt auf, dass wir den Faktor $2$ aus dem zweiten Summanden herausziehen können, womit sich

    $2\cdot \sin(x)+ 2\cdot \frac{1-\tan^2(x)}{1+\tan^2(x)}=1$

    ergibt. Im nächsten Schritt können wir auf beiden Seiten durch $2$ dividieren, sodass die äquivalente Gleichung $\sin(x)+\frac{1-\tan^2(x)}{1+\tan^2(x)}=\frac{1}{2}$ entsteht. Nun bringen wir die $\frac{1}{2}$ noch auf die andere Seite und erhalten damit: $\sin(x)+\frac{1-\tan^2(x)}{1+\tan^2(x)}-\frac{1}{2}=0$.

    Mit Hilfe der Beziehung $\cos(2x)=\frac{1-\tan^2(x)}{1+\tan^2(x)}$ erhalten wir: $\sin(x)+\cos(2x)-\frac{1}{2}=0$. Des Weiteren wissen wir, dass $\cos(2x)=1-2\sin^2(x)$ gilt. Es ergibt sich demnach: $\sin(x)+1-2\sin^2(x)-\frac{1}{2}=0$. Nach dem Zusammenfassen von $1-\frac{1}{2}=\frac{1}{2}$ und Division durch $-2$ erhalten wir:

    $\sin^2(x)-\frac{1}{2}\sin(x)-\frac{1}{4}=0$.

    Wenn wir nun $\sin(x)$ durch $z$ ersetzen, dann folgt:

    $z^2-\frac{1}{2}z-\frac{1}{4}=0$.

    Diese quadratische Gleichung können wir mit Hilfe der p-q - Formel lösen. Es ergibt sich dann:

    $z_{1,2}=\frac{1}{4}\pm\sqrt{\frac{1}{16}+\frac{4}{16}}=\frac{1}{4}\pm\frac{\sqrt{5}}{4}$.

    Demzufolge gelten $\sin(x_1)=z_1=\frac{1+\sqrt{5}}{4}$ oder $\sin(x_2)=z_2=\frac{1-\sqrt{5}}{4}$. Durch Anwenden des Arkussinus und unter Zuhilfenahme des Taschenrechners erhalten wir als Lösungen $x_1=\arcsin(z_1)=54°$ oder $x_2=\arcsin(z_2)=-18°$.

    Eine Probe liefert mit Hilfe des Taschenrechners die beiden wahren Aussagen:

    $\begin{align} 2\cdot \sin(54°)+ \frac{2-2\cdot\tan^2(54°)}{1+\tan^2(54°)}&=1\\ 2\cdot \sin(-18°)+ \frac{2-2\cdot\tan^2(-18°)}{1+\tan^2(-18°)}&=1. \end{align}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.988

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.248

Lernvideos

35.793

Übungen

32.552

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden