3 Profile für Kinder Bis zu 3 Geschwisterprofile in einem Account anlegen
NEU - Badge
Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verkettete Funktionen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Verkettete Funktion Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.9 / 10 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verkettete Funktionen
lernst du in der Oberstufe 7. Klasse - 8. Klasse

Grundlagen zum Thema Verkettete Funktionen

Nach dem Schauen dieses Videos wirst du in der Lage sein, Funktionen zu verketten und verkettete Funktionen zu erkennen.

Zunächst lernst du, wie du zwei Funktionen miteinander verkettest, indem du sie hintereinander ausführst . Anschließend lernst du wie du eine gegebene Funktion als Verkettung darstellen kannst.

Verkettete Funktionen

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Verkettung, innere Funktion und äußere Funktion.

Bevor du dieses Video schaust, solltest du bereits wissen, welche verschiedenen Typen von Funktion es gibt.

Nach diesem Video wirst du darauf vorbereitet sein, zu lernen, wie man verkettete Funktionen ableitet.

Transkript Verkettete Funktionen

Stell dir vor, du hast dir einen Laptop geliehen, weil dein eigener den Geist aufgegeben hat. Und ausgerechnet dann verschüttest du auch noch deinen Kaffee – auf den geliehenen Laptop. Das ist eindeutig eine Verkettung unglücklicher Umstände. Wie wir Funktionen verketten können, schauen wir uns in diesem Video an. „Verkettete Funktionen“ - unter der Bezeichnung kann man sich erstmal nicht wirklich was vorstellen. Dahinter verbirgt sich aber eine ganz einfache Idee – nämlich die Verknüpfung von zwei oder mehreren Funktionsvorschriften, die in einer Funktionsgleichung zusammengefasst werden. Wir machen uns das an unserem Einstiegsbeispiel deutlich. Der Umstand „Ich habe mir einen Laptop geliehen“ und der Umstand „ich habe den Kaffee verschüttet“ führt in Kombination zu dem Ergebnis: „Jetzt hab ich den geliehenen Laptop geschrottet.“ Große Klasse! Zurück zur Mathematik. Geben wir diesen Umständen mal zwei x-beliebige Funktionsterme als Namen. Den ersten taufen wir „v von x gleich zwei x minus eins“, den zweiten „u von x gleich x hoch zwei.“ Schöne Namen, nicht wahr? Der erste Umstand sagt uns also: „Verdopple einen Wert x und subtrahiere anschließend eins.“ aka „Ich habe mir einen Laptop geliehen.“ Der zweite Umstand lautet: „Quadriere einen Wert“. aka „Ich habe den Kaffee verschüttet.“ Für sich genommen sind beide Funktionsterme nicht sonderlich problematisch. Doch was passiert, wenn wir sie verketten, also nacheinander ausführen? Schauen wir es uns einmal an: Wir starten mit einem beliebigen Wert x, und wenden die erste Anweisung an. Sprich wir verdoppeln ihn und subtrahieren eins. Die zweite Anweisung wenden wir jetzt anschließend auf den resultierenden Term an. Wir quadrieren also „zwei x minus eins“. Das Ergebnis ist unsere verkettete Funktion. Wir nennen sie „f von x“ beziehungsweise „Ich habe den geliehenen Laptop geschrottet.“ Das Beispiel macht deutlich, worum es bei der Verkettung von Funktionen geht: Nämlich die Hintereinanderausführung von mehreren Funktionstermen. Streng mathematisch formulieren wir das so: Die Funktion f mit „f von x“ gleich „u von v von x“ ist die Verkettung der Funktionen u und v. Wenn wir also auf einen x-Wert zunächst die Funktion „v“, und auf den resultierenden Wert anschließend „u“ anwenden, haben wir insgesamt die Funktion „f“ ausgeführt. Funktion v, die wir zuerst ausführen, nennen wir die innere Funktion. Funktion u, die anschließend ausgeführt wird, ist die äußere Funktion. Dazu schauen wir uns noch ein Beispiel an. Gegeben sind die Funktionen „u von x“ gleich „eins durch zwei x“, und „v von x“ gleich „drei x Quadrat minus zwei“. u ist unsere äußere Funktion, und v die innere Funktion. Um die Funktion „f von x“ gleich „u von v von x“ aufzustellen, starten wir mit der inneren Funktion und setzen für „v von x“ den entsprechenden Funktionsterm ein. Jetzt müssen wir noch die äußere Funktion auf diesen Funktionsterm anwenden. Wir setzen also die innere Funktion für x in die äußere Funktion ein. Fertig ist unsere verkettete Funktion „f von x“. Achtung! Es macht einen Unterschied, welche Funktion wir in die andere einsetzen. Schauen wir uns das ganze mal andersherum an: Wir bilden die Funktion „g von x“ gleich „v von u von x“. Jetzt führen wir also zuerst „u von x“ aus, und wenden auf diesen Funktionsterm dann v an, setzen ihn also für das x in v ein. So erhalten wir diesen Funktionsterm, der sich eindeutig von „f von x“ unterscheidet. Wir müssen daher immer darauf achten die Funktion, die als innere festgelegt wurde, zuerst und die äußere Funktion erst anschließend anzuwenden. Oft ist es in der Mathematik sehr nützlich, eine gegebene Funktion als Verkettung zu betrachten beziehungsweise darzustellen. Wir schauen uns auch dazu ein Beispiel an. Die Funktion „f von x“ gleich „e hoch sechs x plus fünf“ soll so in die Funktionen u und v unterteilt werden, dass „f von x“ gleich „u von v von x“ gilt. Wir müssen also die innere und die äußere Funktion so festlegen, dass sie verkettet „f von x“ ergeben. Dazu schauen wir uns zuerst den Term an, der das x enthält. „Sechs x plus fünf“ wird hier zuerst ausgeführt, und anschließend in den Exponenten von e eingesetzt. Daher können wir hier „sechs x plus fünf“ als innere, und die e-Funktion „e hoch x“ als äußere Funktion festlegen. Dann haben wir „u von v von x“ gleich „u von sechs x plus fünf“ gleich „e hoch sechs x plus fünf“. Und das ist – wie wir es wollten – gleich f von x. Fassen wir das Ganze nochmal zusammen. Bei verketteten Funktionen geht es um die Hintereinanderausführung von Funktionstermen. Die Funktion, die wir zuerst ausführen, ist die innere Funktion. Die Funktion die wir als Zweites ausführen, nennen wir äußere Funktion. Ineinander verschachtelt ergeben sie zusammen die verkettete Funktion. Die Darstellung als Verkettung vereinfacht für uns die Betrachtung komplexer Funktionsterme. Genauer gesagt: Wir können eine komplexe Funktion so in eine innere und eine äußere Funktion unterteilen. Das erfordert ein scharfes Auge und Konzentration – ähnlich, wie wenn man auf einem fremden Laptop zocken, Mathe lernen und dabei gleichzeitig Kaffee trinken möchte.

Verkettete Funktionen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verkettete Funktionen kannst du es wiederholen und üben.
  • Beschreibe, was eine Verkettung von Funktionen bedeutet.

    Tipps

    Bei einer Verkettung von Funktionen werden die Vorschriften der inneren und äußeren Funktion hintereinander ausgeführt.

    Die beiden Funktionen $u(x) = x^3$ und $v(x) = x + 1$ können zu $g(x) = v(u(x)) = x^3 + 1$ verknüpft werden.
    Dabei ist $v(x)$ die äußere und $u(x)$ die innere Funktion.

    Lösung

    Eine verkettete Funktion fasst die Funktionsvorschriften von zwei oder mehr Funktionen in einer Funktionsgleichung zusammen. Die Funktionen werden hintereinander ausgeführt.
    Die zuerst ausgeführte Funktion heißt dabei innere Funktion. Die anschließend ausgeführte Funktion ist die äußere Funktion, da sie den ersten Funktionsterm umschließt.

    Beispiel:

    Die beiden Funktionsterme $u(x) = x^2$ und $v(x) = 2x - 1$ ergeben durch Verkettung die Funktion $f(x) = u(v(x)) = (2x - 1)^2$.
    Dabei ist $v(x)$ die innere Funktion und $u(x)$ die äußere Funktion.

    Die beiden Funktionen können auch zu $g(x) = v(u(x)) = 2x^2 - 1$ verknüpft werden.
    Dabei ist $v(x)$ die äußere und $u(x)$ die innere Funktion.

  • Gib die Funktionsterme an, die sich aus einer Verkettung der Funktionen $u(x)$ und $v(x)$ ergeben.

    Tipps

    Du kannst die folgenden verketteten Funktionen bilden:

    • $u(v(x))$
    • $v(u(x))$

    Setze den Funktionsterm der inneren Funktion für die Variable $x$ in den Term der äußeren Funktion ein.

    Lösung

    Zur Verkettung zweier Funktionen werden deren Funktionsvorschriften hintereinander ausgeführt. Dazu setzen wir den Funktionsterm der inneren Funktion für die Variable $x$ in den Term der äußeren Funktion ein.

    Die Funktionen $u(x) = \dfrac{1}{2x}$ und $v(x) = 3x^2-2$ können wir folgendermaßen verketten:

    $u(v(x))$:
    Die innere Funktion ist $v(x)$, wir setzen ihren Funktionsterm für $x$ in die äußere Funktion $u(x)$ ein.
    $u(v(x)) = u(3x^2-2) = \frac{1}{2(3x^2 - 2)}$
    Durch Zusammenfassen erhalten wir $\frac{1}{6x^2 - 4}$, der Faktor $2$ steht im Nenner von $u(x)$, daher ist der Term $\frac{2}{3x^2 - 2}$ falsch.


    $v(u(x))$:
    Die innere Funktion ist $u(x)$, wir setzen ihren Funktionsterm für $x$ in die äußere Funktion $v(x)$ ein.
    $v(u(x)) = v(\frac{1}{2x}) = 3\left(\frac{1}{2x}\right)^2 - 2$
    Durch Zusammenfassen erhalten wir $3\frac{1}{4x^2} - 2$, da sich das Quadrat auf den ganzen Bruch bezieht und nicht nur auf das $x$, ist der Term $3\frac{1}{2x^2} - 2$ falsch.

  • Wende die Funktionsvorschrift an.

    Tipps

    Um zwei Funktionen zu verketten, setzt du den Funktionsterm der inneren Funktion in die äußere Funktion ein.

    Beispiel:

    $u(w(x)) = u(x^3) = 5^{x^3}$

    Lösung

    Wir bilden den Funktionsterm einer verketteten Funktion, indem wir die Vorschriften der inneren und äußeren Funktion hintereinander ausführen. Dazu setzen wir den Funktionsterm der inneren Funktion für die Variable $x$ in die äußere Funktion ein.

    Für die gegebenen Funktionen:

    • $u(x) = 5^x$
    • $v(x) = \frac{1}{3x + 5}$
    • $w(x) = x^3$
    ...erhalten wir die folgenden verketteten Funktionen:

    • $u(v(x)) = u(\frac{1}{3x + 5}) = 5^{\frac{1}{3x + 5}}$
    • $v(u(x)) = v(5^x) = \frac{1}{3\cdot 5^x + 5}$
    • $w(v(x)) = w(\frac{1}{3x + 5}) = \left(\frac{1}{3x + 5}\right)^3 = \frac{1}{(3x + 5)^3}$
    • $w(u(x)) = w(5^x) = (5^x)^3 = 5^{3x}$
  • Ermittle den Term der inneren und äußeren Funktion der Verkettung.

    Tipps

    Die innere Funktion wird zuerst auf die Variable $x$ angewendet, ihr Term enthält daher $x$.

    Die äußere Funktion enthält oder umschließt die innere Funktion.

    Lösung

    Oft ist es nützlich einen Funktionsterm als Verkettung von Funktionen zu schreiben. Dazu müssen wir die innere und die äußere Funktion identifizieren, deren Vorschriften nacheinander auf $x$ angewendet werden. Die innere Funktion enthält dabei stets die Variable $x$, die äußere Funktion enthält oder umschließt den inneren Funktionsterm.

    $(x - 2)^3$:

    • innere Funktion: $x - 2$
    • äußere Funktion: $x^3$

    $\sin(\frac{2}{x+3})$:

    • innere Funktion: $\frac{2}{x+3}$
    • äußere Funktion: $\sin(x)$

    $3^{x^2-1}$:

    • innere Funktion: $x^2 - 1$
    • äußere Funktion: $3^x$

    $\lbrack \cos(x) + 3 \rbrack ^2$:

    • innere Funktion: $ \cos(x) + 3 $
    • äußere Funktion: $x^2$
  • Benenne die Funktionen, die angewendet werden.

    Tipps

    Die äußere Funktion umschließt die innere Funktion.

    Beispiel:

    • innere Funktion: $k(x)$
    • äußere Funktion: $l(x)$
    • Verkettung: $l(k(x))$
    Lösung

    Wenn wir zwei Funktionsvorschriften hintereinander ausführen, dann sprechen wir von einer Verkettung von Funktionen. Dabei ist der zuerst ausgeführte Term die sogenannte innere Funktion. Den Term, den wir danach anwenden, bezeichnet man als äußere Funktion.

    Betrachten wir die Funktionen:

    • $u(x) = e^x$
    • $v(x) = x^2 + 1$
    Die innere Funktion ist $v(x) = x^2 + 1$. Auf ihren Term wenden wir die Vorschrift der äußeren Funktion $u(x) = e^x$ an und erhalten:
    $u(v(x)) = e^{x^2 + 1}$

  • Stelle den Funktionsterm auf.

    Tipps

    Wenn wir mehr als zwei Funktionen verketten, können wir die Funktionsterme nacheinander einsetzen, beginnend mit der innersten Funktion.

    Beispiel:

    • $u(x) = 2x$
    • $v(x) = 5^x$
    • $w(x) = x^3$
    $v(w(u(x))) = v(w(2x)) = v((2x)^3) = v(8x^3) = 5^{8x^3}$

    Lösung

    Wir können zwei oder mehr Funktionsvorschriften in einer Funktionsgleichung zusammenfassen. Dazu führen wir die Funktionsterme hintereinander aus.

    $f(x) = v(w(u(x)))$ mit:

    • $u(x) = \frac{2}{x + 1}$
    • $v(x) = \cos(x)$
    • $w(x) = x^3$
    Wir setzen nacheinander von innen nach außen ein:
    $f(x) = v(w(u(x))) = v(w\left(\frac{2}{x + 1}\right)) = v(\left(\frac{2}{x + 1}\right)^3) = v\left(\frac{8}{(x + 1)^3}\right) = \cos\left(\frac{8}{(x + 1)^3}\right)$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.993

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.249

Lernvideos

35.817

Übungen

32.576

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden