Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Volumen von Prismen berechnen

Ein Prisma ist ein Körper mit Grund- und Deckflächen. Das Volumen, also der Rauminhalt, wird durch die Grundfläche und die Höhe bestimmt. Erfahre, wie du mithilfe von Formeln das Volumen verschiedener Prismen, wie rechteckiger oder dreieckiger Form, berechnen kannst! Interessiert? Dann schau dir unser informatives Video an und tauche in die Welt der Prismen ein!

Inhaltsverzeichnis zum Thema Volumen von Prismen berechnen
Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Volumen von Prismen berechnen

Welche Formel benutzt man, um das Volumen eines Prismas zu berechnen?

1/5
Bereit für eine echte Prüfung?

Das Volumen Prisma Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 4.2 / 169 Bewertungen
Die Autor*innen
Avatar
Team Digital
Volumen von Prismen berechnen
lernst du in der Unterstufe 1. Klasse - 2. Klasse - 3. Klasse - 4. Klasse

Beschreibung zum Video Volumen von Prismen berechnen

Du weißt schon, was ein Prisma ist, und kennst die wichtigsten Eigenschaften. Aber wie kannst du das Volumen eines Prismas berechnen? Finde es in diesem Video heraus.

Du lernst, wie du das Volumen eines Prismas aus Grundfläche und Höhe berechnen kannst. Das Vorgehen wird dir anhand von Beispielen für unterschiedliche Prismen gezeigt. Ergänzend zum Video findest du auf dieser Seite interaktive Übungen zu diesem Thema. Probier sie gleich im Anschluss aus!

Grundlagen zum Thema Volumen von Prismen berechnen

Volumen von Prismen

Teste dein Wissen zum Thema Volumen Prisma!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Ein Prisma hat eine schöne, extravagante Form für ein Aquarium. Um zu wissen, wie viel Wasser in ein solches Aquarium passt, musst du den Rauminhalt oder das Volumen des Prismas berechnen. In diesem Video erklären wir dir, wie das geht.

Volumen Prisma – Definition

Ein Prisma ist ein Körper, der von Seitenflächen und je einer Grund- und einer Deckfläche begrenzt wird. Die Grund- und Deckfläche sind kongruent zueinander und liegen in zueinander parallelen Ebenen. Das Volumen des Prismas ist der Rauminhalt, der von diesen Flächen umschlossen wird. Du kannst den Rauminhalt in verschiedenen Volumeneinheiten angeben. In diesem Video verwenden wir die Einheit dm3\text{dm}^3 – das ist dasselbe wie die im Alltag gebräuchliche Einheit ll. Das Volumen eines beliebigen Prismas berechnest du mit der Formel:

Volumen=Grundfla¨cheHo¨he\text{Volumen} = \text{Grundfläche} \cdot \text{Höhe}

Man bezeichnet das Volumen üblicherweise mit VV, die Grundfläche mit AA und die Höhe mit hh. Mit diesen Bezeichnungen sieht die Formel für das Prismenvolumen so aus:

V=AhV = A \cdot h


Dreiseitiges Prisma

Ein Prisma über einer dreieckigen Grundfläche nennt man dreiseitiges Prisma. Es hat dreieckige Grund- und Deckflächen und drei Seitenflächen in der Form von Rechtecken.

Volumen Dreiecksprisma

Das Volumen VV des Prismas ist das Produkt seiner Grundfläche AA und der Höhe hh:

V=AΔhV = A_\Delta \cdot h

Beträgt die Grundfläche AΔ=30 dm2A_\Delta = 30~\text{dm}^{2} und die Höhe h=10 dmh=10~\text{dm}, so ist das Volumen V=30 dm210 dm=300 dm3V= 30~\text{dm}^{2} \cdot 10~\text{dm} = 300~\text{dm}^{3}. Das ist dasselbe wie 300 l300~\text l.

Rechteckiges Prisma

Ein Prisma mit rechteckiger Grundfläche heißt rechteckiges Prisma – oder schlicht: Quader. Zur Berechnung des Volumens verwenden wir wie zuvor die Formel V=AhV = A \cdot h. Die Grundfläche AA_{\Box} des rechteckigen Prismas ist das Produkt seiner Länge ll und seiner Breite bb, also: A=lbA_{\Box} = l \cdot b. Für das Volumen des rechteckigen Prismas finden wir also folgende Formel:

V=Ah=lbhV = A_\Box \cdot h = l \cdot b \cdot h

Ein rechteckiges Prisma der Länge l=12 dml=12~\text{dm}, der Breite b=6 dmb=6~\text{dm} und der Höhe h=8 dmh=8~\text{dm} hat eine Grundfläche von:

A=12 dm6 dm=72 dm2A_\Box = 12~\text{dm} \cdot 6~\text{dm} = 72~\text{dm}^2

Sein Volumen beträgt:

V=72 dm28 dm=576 dm3=576 lV=72~\text{dm}^2 \cdot 8~\text{dm} = 576~\text{dm}^3 = 576~\text l

Transkript Volumen von Prismen berechnen

Greifen Sie zum Hörer und sichern Sie sich Ihre bösen Piranhas in Premium-Qualität! Bestellen Sie in den nächsten 3 Minuten und wir machen Ihnen ein unschlagbares Angebot. Lassen Sie sich das auf keinen Fall entgehen! Die Werbung hat Dr. Evil derart überzeugt, dass er sich sofort ein paar Piranhas für seine mörderische Menagerie bestellt hat. Allerdings braucht er dafür natürlich auch ein arglistiges Aquarium. Darum macht er sich auf in die teuflische Tierhandlung seines Misstrauens. Um die richtige Größe des Aquariums zu ermitteln, muss er das Volumen von Prismen berechnen. Er hat 8 Piranhas bestellt. Jeder der fiesen Fische braucht 60 Kubikdezimeter Wasser. Dr. Evil braucht also ein Aquarium mit einem Volumen von mindestens 480 Kubikdezimetern, damit die Tiere genug Platz haben, um ihre volle Bösartigkeit zu entfalten. Ach, so viele niederträchtige Aquarien. Aber welches ist am niederträchtigsten? Als Erstes fällt ihm eins in Form eines dreiseitigen Prismas ins Auge, also ein Prisma mit dreieckiger Grundfläche. Leider steht das Volumen nicht auf dem Schild. Helfen wir Dr. Evil also, es zu berechnen. Das Infokärtchen sagt, dass die dreieckige Grundfläche des Prismas 30 Quadratdezimeter beträgt. Und das Aquarium ist 10 Dezimeter hoch. Wie kann Dr. Evil mit diesen Informationen das Volumen des Aquariums berechnen? Das Volumen eines Prismas berechnet man, indem man seine Grundfläche mit der Höhe multipliziert. Wenn wir die Werte für Grundfläche und Höhe einsetzen, erhalten wir ein Volumen von 300 Kubikdezimetern. Im Aquarium ist also nicht genug Platz für Dr. Evils hinterhältige Flossenviecher. Und nichts läge ihm ferner, als seinen Lieblingen Schaden zuzufügen. Er wendet sich deswegen einem ganz klassischen Modell in Form eines rechteckigen Prismas zu. Das nennt man so, weil seine Grundfläche aus einem Rechteck besteht. Auf der Infotafel steht: Länge: 6 Dezimeter. Auf der Infotafel steht: Länge: 12 Dezimeter, Breite: 12 Dezimeter, Breite: 6 Dezimeter und Höhe 8 Dezimeter. Um unsere Formel - Volumen gleich Grundfläche mal Höhe - anwenden zu können, müssen wir zusammen mit Dr. Evil also die Grundfläche ausrechnen. Wie du dich vielleicht erinnerst, berechnet man die Fläche eines Rechteckes ganz einfach, indem man die Längen seiner beiden Seiten multipliziert. Für dieses schreckliche Aquarium bedeutet das, dass man die Länge mit der Breite multiplizieren muss. Für das Volumen bekommen wir so folgende Formel: Länge mal Breite mal Höhe. Wenn wir die Werte einsetzen, erhalten wir ein Volumen von 576 Kubikdezimetern. Super, das ist genug Platz für grenzenlose Garstigkeit. Alle Piranhas werden genug Platz haben, um ihren perfiden Piranhaplänen nachzugehen. Fassen wir zusammen: Um das Volumen eines Prismas zu berechnen, brauchst du zwei Werte: Die Grundfläche und die Höhe. Diese Werte musst du einfach multiplizieren. Achte auf die Einheiten, bevor du losrechnest. Du willst ja nicht Dezimeter mit Zoll multiplizieren, das wäre wirklich übel. Die Form der Grundfläche ist egal, die Formel funktioniert immer. Das Volumen eines Prismas ist gleich die Grundfläche mal die Höhe, also V = A mal h. Dr. Evil hat sein ungezogenes Aquarium inzwischen zuhause aufgebaut. Da ist auch schon das Paket, das er fies-o-fies öffnet. Spielzeugfische? Die hat er aber nicht bestellt. Oder doch? Man muss halt immer daran denken, das grauenvolle Kleingedruckte zu lesen.

27 Kommentare
  1. Sehr geholfen

    Von Nathan, vor fast 2 Jahren
  2. Es hat mir-

    Von Nathan, vor fast 2 Jahren
  3. cool

    Von mm, vor fast 2 Jahren
  4. Oder vielleicht auch mein alter Physik Lehrer😂😂😂😂😂😅😅😅😅

    Von Mia Christina, vor fast 2 Jahren
  5. Ist dass Albert Einstein auf den Bild?😅😂

    Von Mia Christina, vor fast 2 Jahren
Mehr Kommentare

Volumen von Prismen berechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Volumen von Prismen berechnen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.152

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.600

Lernvideos

35.593

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden