Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Faktor- und Summenregel für Integrale

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Faktor- Und Summenregel Für Integrale Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
Team Digital
Faktor- und Summenregel für Integrale
lernst du in der Oberstufe 7. Klasse - 8. Klasse

Grundlagen zum Thema Faktor- und Summenregel für Integrale

Nach dem Schauen dieses Videos wirst du in der Lage sein, Funktionen mit der Produkt- und Summenregel zu integrieren.

Zunächst lernst du einige wichtige Basis-Integrale kennen. Anschließend lernst du, wie du die Produktregel anwenden kannst. Abschließend erfährst du, wie du die Summenregel anwenden kannst.

Faktorregel Summenregel

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Integral, Produktregel und Summenregel.

Bevor du dieses Video schaust, solltest du bereits die Potenzregel für Integrale kennen. Außerdem solltest du grundlegendes Wissen zu verschiedenen Funktionstypen haben.

Nach diesem Video wirst du darauf vorbereitet sein, "Integrieren durch Substitution" zu lernen.

Transkript Faktor- und Summenregel für Integrale

Wünschst du dir auch manchmal, du könntest etwas Geschehenes einfach wieder rückgängig machen? Das ist im wahren Leben leider meist nicht möglich. Zum Glück haben wir die Mathematik! Hier können wir eine Ausversehen abgeleitete Funktion wieder in ihre Ursprungsform bringen, indem wir sie mit der Faktor- und Summenregel integrieren. Integrieren – dazu vielleicht erstmal eine kurze Wiederholung: Die Potenzregel für Integrale hilft uns, wenn wir eine Potenzfunktion, beziehungsweise eine Funktion, die wir als Potenz darstellen können, integrieren möchten. Dafür müssen wir den Exponenten der Funktion um eins erhöhen, und die Potenz dann mit dem Kehrwert des um eins erhöhten Exponenten multiplizieren. Außerdem addieren wir die Integrationskonstante c, da ja das unbestimmte Integral die Menge aller Stammfunktionen angibt. Die Potenzregel für Integrale ist somit das Gegenstück zur Potenzregel für Ableitungen. Bevor wir jetzt zur Faktor- und Summenregel kommen, schauen wir uns am Besten noch einige grundlegende Integrale an, die wir uns gut merken sollten! Zunächst einmal sollten wir wissen was passiert, wenn wir eine konstante Zahl integrieren. Wir nehmen hier mal stellvertretend die drei. Aber ganz egal um welche Zahl es sich handelt: Wir integrieren sie, indem wir einfach ein x dranhängen und die Integrationskonstante c addieren. Dann ist da noch das Integral der Funktion „eins durch x“. Das ist ja gleich „x hoch minus-eins“ und dieser Exponent ist bei der Potenzregel ausgeschlossen. Wenn wir versuchen diese Funktion mit der Potenzregel zu integrieren, kommen wir nicht weit, da wir an dieser Stelle durch null teilen müssten. Das können wir deiner Mathelehrkraft wirklich nicht antun! Hierzu musst du dir einfach merken, dass dieses Integral gleich dem natürlichen Logarithmus des Betrags von x ist. Manche nehmen es nicht ganz so genau, aber wenn du hier die Betragsstriche nicht vergisst und vor allem auch c immer mitschreibst, bist du auf jeden Fall auf der sicheren Seite. Für sowas will man in der Klausur wirklich keine Punkte abgezogen bekommen! Deutlich einfacher ist der Fall „e hoch x“. Da sich „e hoch x“ beim Ableiten nicht verändert, ändert sich auch beim Integrieren nichts. Außer, dass wir natürlich auch hier die Integrationskonstante c nicht vergessen dürfen! Und dann gibt es da noch unsere alten Bekannten Sinus und Cosinus. Hierzu kennst du vielleicht noch diesen praktischen Kreislauf als Merkhilfe, der anzeigt, wie wir Sinus und Cosinus ableiten können. Dazu müssen wir nur mit dem Uhrzeigersinn gehen. Da wir durch das Integrieren das Ableiten umkehren, funktioniert dieser Kreislauf beim Integrieren genau andersherum, also gegen den Uhrzeigersinn. Das Integral von Sinus ist also minus-Cosinus, minus-Cosinus integriert ergibt minus-Sinus, dann erhält man Cosinus und schließlich wieder Sinus. Und so weiter, ein ewiger Kreislauf! Wenn du diese wichtigen Integrale auf dem Kasten hast, ist das eine super Basis. Denn diese Funktionen treten natürlich nicht immer in Reinform auf, sondern können auch mit einem Faktor multipliziert oder zu einer Summe kombiniert werden. Dann kommen Faktor- und Summenregel zum Einsatz! Das Schöne ist: Diese beiden Regeln sind ganz einfach und funktionieren praktisch genauso wie bei Ableitungen! Zunächst zur Faktorregel. Sie besagt, dass ein Faktor, der eine reelle Zahl ist, beim Integrieren einfach stehen bleibt. Wir können also einen konstanten Faktor einfach aus dem Integral ziehen. Das schauen wir uns am Besten an einem Beispiel an. Um diese Funktion zu integrieren, können wir den Faktor Acht also zunächst aus dem Integral ziehen. Dann die Potenzfunktion wie gewohnt integrieren, und anschließend mit dem unveränderten Faktor Acht multiplizieren und ein c spendieren. Easy! Wir können das Ganze ganz leicht überprüfen, indem wir die Funktion einfach wieder ableiten. Du weißt schon. Rückgängig machen und so. Und siehe da! Passt alles. Zur Summenregel! Auch die ist sehr intuitiv und gut zu merken! Sie besagt, dass das Integral einer Summe von zwei Funktionen – nennen wir sie „f von x“ und „g von x“ – gleich der Summe der Integrale der beiden Funktionen ist. In anderen Worten: Wir können eine Summe integrieren, indem wir die Summanden einfach einzeln integrieren. Genauso wie beim Ableiten! Auch dazu schauen wir uns ein kurzes Beispiel an. Um dieses Integral zu berechnen, können wir es zunächst in drei Integrale zerlegen. Dann können wir diese einzeln berechnen, indem wir Potenz- und Faktorregel anwenden. Und schon haben wir das Integral berechnet. Da c irgendeine reelle Zahl sein kann, können wir es erst am Ende addieren. Aber nicht vergessen, sonst gibt's meistens Punktabzug! Um unser Ergebnis zu überprüfen müssen wir diese Funktion einfach wieder ableiten. Probiere es doch mal aus! Also gut – Was müssen wir uns alles merken? Mit der Faktor- und Summenregel können wir zusammengesetzte Funktionen integrieren. Das funktioniert genauso wie beim Ableiten. Sowohl bei der Faktorregel – die besagt, dass konstante Faktoren beim Integrieren erhalten bleiben – als auch bei der Summenregel – nach der wir Summanden einer Funktion einzeln integrieren können. Außerdem sollten wir einige Standardintegrale – hier siehst du sie noch einmal – und den „Sinus-Cosinus-Kreislauf“ im Kopf behalten, da diese Funktionen immer mal wieder auftauchen können. Dann sind wir schonmal ganz gut gerüstet, um auch etwas komplizierter aufgebaute Funktion zu integrieren. Na also! Irgendeine Lösung für das Problem lässt sich doch immer finden! Der Tag ist gerettet.

Faktor- und Summenregel für Integrale Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Faktor- und Summenregel für Integrale kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.152

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.600

Lernvideos

35.593

Übungen

32.336

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden