- Mathematik
- Wahrscheinlichkeitsrechnung und Stochastik
- Binomialverteilung
- Binomialverteilung
Binomialverteilung
Die Binomialverteilung wird verwendet, um die Wahrscheinlichkeit von verschiedenen Ergebnissen bei Bernoulli-Versuchen zu berechnen. In unserem Video erklären wir, wie sie abgeleitet wird und welche Bedeutung der Binomialkoeffizient hat. Verstehst du die Binomialverteilung? Interessiert? Das und vieles mehr erfährst du im folgenden Text.
- Binomialverteilung – Definition
- Binomialverteilung – Herleitung
- Binomialverteilung – Eigenschaften
- Binomialverteilung – Erwartungswert
- Binomialverteilung – Varianz
- Binomialverteilung – Standardabweichung
- Kumulierte Binomialverteilung
- Binomialverteilung berechnen
- Binomialverteilung – Aufgaben
- Ausblick – das lernst du nach Binomialverteilung
- Zusammenfassung – Binomialverteilung
- Häufig gestellte Fragen zum Thema Binomialverteilung
die Noten verbessern
In wenigen Schritten dieses Video freischalten & von allen sofatutor-Inhalten profitieren:
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Das Binomialverteilung Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?
Quiz startenDu musst eingeloggt sein, um bewerten zu können.
Wow, Danke!
Gib uns doch auch deine Bewertung bei Google! Wir freuen uns!
Grundlagen zum Thema Binomialverteilung
Binomialverteilung – Definition
Die Binomialverteilung ist eine Wahrscheinlichkeitsverteilung in der Stochastik. Sie bildet ab, mit welchen Wahrscheinlichkeiten die Ergebnisse eines binomialverteilten Zufallsexperiments eintreten.
Die Binomialverteilung ist die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße.
Durch sie lassen sich die Wahrscheinlichkeiten berechnen, mit denen die Ergebnisse einer Bernoulli‑Kette eintreten.
Eine Bernoulli‑Kette ist eine Aneinanderreihung mehrerer Bernoulli‑Experimente.
Ein Bernoulli‑Experiment ist ein Zufallsexperiment mit genau zwei möglichen Ausgängen. Diese werden in der Regel Treffer und Nichttreffer oder Erfolg und Misserfolg genannt.
Bei einer Bernoulli‑Kette mit $n$ Versuchen (Bernoulli‑Experimente) und einer Trefferwahrscheinlichkeit $p$ wird die Binomialverteilung der möglichen Treffer $k$ durch eine Funktion $\bf B_{n,p}(k)$ abgebildet:
$B_{n,p}(k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k} \qquad \text{mit~} p \in [0,1] ; k \in [0,1,2,...,n]$
Die Binomialverteilung ist eine diskrete Wahrscheinlichkeitsverteilung: Es wird jedem $k$ (Anzahl der Treffer) eine Wahrscheinlichkeit $P(X=k)$ durch die Formel von Bernoulli zugeordnet:
$P(X=k)=B_{n;p}(k)= \displaystyle \binom{n}{k} \cdot p^k\cdot (1-p)^{n-k}$
Da die Anzahl der Treffer natürliche Zahlen sind, spricht man von einer diskreten Verteilung. Die Zufallsgröße $X$ ist binomialverteilt.
Fehleralarm
Viele verwechseln die Parameter $n$ und $p$ in der Binomialverteilung. Hier ist $n$ die Anzahl der Versuche und $p$ die Wahrscheinlichkeit eines Erfolgs pro Versuch.
Durch die Formel von Bernoulli lassen sich die Wahrscheinlichkeiten aller möglichen Kombinationen von Treffern $(k)$ und Nichttreffern $(n-k)$ einer binomialverteilten Zufallsgröße berechnen (mit gegebenen Werten für $n$ und $p$).
Die Wahrscheinlichkeitsverteilung, die sich daraus ergibt, kann übersichtlich in einem Histogramm dargestellt werden. Das sieht dann beispielsweise so aus:
Histogramm einer binomialverteilten Zufallsgröße $X$ |
---|
Das Histogramm zeigt die Wahrscheinlichkeitsverteilung einer Bernoulli‑Kette mit $n=10$ Versuchen und einer Trefferwahrscheinlichkeit $p=0{,}2$.
Bernoulli‑Experiment
Die Binomialverteilung gibt die Wahrscheinlichkeitsverteilung bei einer Bernoulli‑Kette an. Eine Bernoulli‑Kette ist eine Aneinanderreihung mehrerer Bernoulli‑Experimente (Bernoulli‑Versuche). Jeder Versuch hat genau zwei mögliche Ausgänge: Treffer und Nichttreffer, manchmal auch Erfolg und Misserfolg genannt.
Als Bernoulli‑Experimente bezeichnet man Zufallsexperimente, bei denen es für jeden Einzelversuch genau zwei mögliche Ausgänge gibt, die sich gegenseitig ausschließen.
Im Allgemeinen nennt man diese möglichen Ausgänge Treffer und Nichttreffer oder Erfolg und Misserfolg.
Beispiele für solche Experimente sind beispielsweise der Münzwurf (Zahl, Kopf), das Loseziehen (Gewinn, Niete) oder auch das Ziehen mit Zurücklegen aus einer Urne (erwünschte Kugel, unerwünschte Kugel).
Ein Bernoulli‑Experiment ist also ein Zufallsexperiment mit nur zwei möglichen Ergebnissen.
Wird ein solches Experiment mehrmals hintereinander unter den gleichen Voraussetzungen durchgeführt, spricht man von einer Bernoulli‑Kette. Es handelt sich hierbei um ein mehrstufiges Zufallsexperiment.
Mit unter den gleichen Voraussetzungen ist gemeint, dass sich die Wahrscheinlichkeiten für Treffer und Nichttreffer von Versuch zu Versuch nicht ändern. Das heißt, die einzelnen Bernoulli‑Experimente sind voneinander unabhängig.
Wusstest du schon?
Durch die Binomialverteilung kann man zum Beispiel abschätzen, wie oft eine Münze bei 100 Würfen auf Kopf fällt. Wenn du also mal ein Münzspiel spielst, kannst du deine Gewinnchancen mathematisch berechnen und deine Freunde beeindrucken!
Binomialverteilung – Herleitung
Für die Herleitung der Binomialverteilung sehen wir uns an, wie man zur Formel von Bernoulli kommt.
Bei einem einzelnen Bernoulli‑Experiment können wir die beiden möglichen Ergebnisse Treffer und Nichttreffer mit $T$ bzw. $\bar T$ bezeichnen. Es gilt:
- Die Wahrscheinlichkeit für einen Treffer wird durch $P(T)=p$ beschrieben.
Der Wert $p$ liegt immer zwischen $0$ und $1$. - Die Wahrscheinlichkeit für einen Nichttreffer ist $P(\bar T)=1-p$.
Da Treffer und Nichttreffer die beiden einzigen möglichen Ergebnisse des Bernoulli‑Experiments sind, müssen ihre Wahrscheinlichkeiten addiert den Wert $1$ ergeben.
Schlaue Idee
Wenn du in einem Sportteam bist, schätze die Wahrscheinlichkeit, dass dein Team eine bestimmte Anzahl an Treffern erzielt. Die Binomialverteilung hilft dir dabei, Vorhersagen zu treffen und die Leistungsfähigkeit des Teams besser einzuschätzen.
Eine Bernoulli‑Kette kann als mehrstufiges Zufallsexperiment mithilfe eines Baumdiagramms dargestellt werden. Das sieht, ganz allgemein, so aus:
Baumdiagramm einer Bernoulli‑Kette der Länge $3$ |
---|
Mithilfe der Pfadregeln können die Wahrscheinlichkeiten $P(X=k)$ der folgenden Ereignisse mit $k$ Treffern berechnet werden:
- Ereignis $A$: „Es gibt drei Treffer.“: $P(A)=P(X=3)=p^3$
- Ereignis $B$: „Es gibt zwei Treffer.“: $P(B)=P(X=2)= {\bf{3}} \cdot p^2 \cdot (1-p)^1$,
denn es gibt insgesamt drei Pfade, auf denen zwei Treffer liegen. - Ereignis $C$: „Es gibt einen Treffer.“: $P(C)=P(X=1)={\bf{3}} \cdot p^1 \cdot (1-p)^2$,
denn es gibt auch in diesem Fall drei Pfade, die einen Treffer beinhalten. - Ereignis $D$: „Es gibt keinen Treffer.“: $P(D)=P(X=0)= p^0 \cdot (1-p)^3$
Wie du siehst, kann aus den jeweiligen Termen die Anzahl der Treffer sowie der Nichttreffer abgelesen werden, denn diese stehen jeweils im Exponenten des entsprechenden Faktors $p$ bzw. $(1-p)$.
Betrachten wir die Wahrscheinlichkeit für $k$ Treffer entlang eines einzelnen Pfades, müssen die Ergebnisse entlang eines Pfades nacheinander multipliziert werden. Treffer und Nichttreffer berücksichtigen wir mit den entsprechenden Wahrscheinlichkeiten $p$ und $(1-p)$.
Mit den Regeln der Kombinatorik können wir außerdem bestimmen, wie viele Möglichkeiten es gibt, beispielsweise einen oder zwei Treffer zu erzielen. Für diese Berechnung wird der Binomialkoeffizient verwendet:
$\displaystyle \binom{n}{k}$
Der Binomialkoeffizient gibt die Anzahl aller möglichen Pfade der Länge $n$ an, die $k$ Treffer enthalten.
Aus den Faktoren und dem Binomialkoeffizienten setzt sich nun die Formel von Bernoulli zusammen:
$P(X=k)=B_{n;p}(k)=\displaystyle \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$
Dabei gilt:
- $X$ ist die Zufallsgröße. Der Wert der Zufallsgröße ist gleich der Anzahl der Treffer $k$.
- $k$ steht für die Anzahl der Treffer. Es handelt sich um eine natürliche Zahl.
- $n$ steht für die Länge der Bernoullikette, also die Anzahl der Versuche.
- $p$ ist die Trefferwahrscheinlichkeit, also die Wahrscheinlichkeit, bei einem Versuch das Ergebnis Treffer zu erzielen.
Die Wahrscheinlichkeit für einen
Führt man das Experiment, zum Beispiel den Münzwurf, $n$‑mal aus, erhält man als Ergebnis ein $\bf n$-Tupel, in dem die einzelnen Ergebnisse aufgezählt sind. Das könnte beispielsweise so aussehen:
$n \text{-Tupel:} \qquad \left( \, T, ~\bar T, ~T, ~\bar T, ~..., ~T \, \right)$
Die Wahrscheinlichkeit, ein bestimmtes $n$-Tupel, also eine bestimmte Anzahl von Treffern/Erfolgen (und Nichttreffern/Misserfolgen) zu erhalten, nennen wir ${P(e_{k_i,n})}$.
Es gilt:
$\underbrace{P(e_{k_i,n})}_{\text{Wahrscheinlichkeit für Tupel}} = \underbrace{p^{k}}_{k~ \text{Äste mit Erfolg}} \cdot \underbrace{(1-p)^{n-k}}_{(n-k) ~ \text{Äste mit Misserfolg}} $
Allerdings spielt bei einer Bernoulli‑Kette die Reihenfolge der einzelnen Ergebnisse keine Rolle. Wenn wir beispielsweise bei zwei Würfen einmal Erfolg erreichen wollen, ist es egal ob wir Erfolg, Misserfolg $\left( T, ~\bar T \right)$ werfen oder Misserfolg, Erfolg $\left( \bar T, ~T \right)$. Deshalb müssen alle möglichen Pfade zusammengezählt werden, in denen genau $k$ Erfolge vorkommen. Die Anzahl an Möglichkeiten erhalten wir durch den Binomialkoeffizienten, der unsere Formel vervollständigt:
$P(X=k) = \underbrace{\displaystyle \binom{n}{k}}_{\text{Binomialkoeffizient}} \cdot \qquad p^{k} \qquad \cdot \qquad (1-p)^{n-k}$
So erhalten wir genau die Wahrscheinlichkeit dafür, bei $n$ Würfen $k$ Erfolge zu erzielen, wobei die Reihenfolge der Ergebnisse egal ist.
Die Binomialfunktion $P(X=k)$ können wir nutzen, um die Wahrscheinlichkeiten aller möglichen Werte zu berechnen, die die Zufallsgröße $X$ annehmen kann.
Diese Wahrscheinlichkeiten bilden zusammen eine Wahrscheinlichkeitsverteilung – das ist die Binomialverteilung $B_{n;p}(k)$ der binomialverteilten Zufallsgröße.
Binomialverteilung – Formel
Die Formel, mit der die Binomialverteilung $B_{n,p}(k)$ einer binomialverteilten Zufallsgröße berechnet werden kann, lautet:
$B_{n,p}(k) = P(X=k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
$\qquad \text{mit~} p \in [0,1] ; k \in [0,1,2,...,n]$
Die Binomialverteilung $B_{n,p}(k)$ bildet die Wahrscheinlichkeitsverteilung $P(X=k)$ einer binomialverteilten Zufallsgröße $X$ ab. Durch sie können die Wahrscheinlichkeiten aller möglichen Anzahlen von Treffern $k$ berechnet werden.
Dafür muss die Anzahl $n$ der Versuche und die Wahrscheinlichkeit $p$ für das Ergebnis Treffer eines einzelnen Versuchs gegeben bzw. bekannt sein.
- $n$ ist die Anzahl der Versuche – also eine natürliche Zahl.
- $k$ ist die Anzahl der erzielten Treffer – also ebenfalls eine natürliche Zahl.
- $n-k$ ist die Anzahl der Nichtreffer.
- $p$ ist die Trefferwahrscheinlichkeit bei einem einzelnen Versuch. Sie liegt zwischen $0$ und $1$.
- $(1-p)$ ist die Wahrscheinlichkeit, einen Nichttreffer bei einem einzelnen Versuch zu erzielen.
Binomialverteilung – Eigenschaften
Bei einer binomialverteilten Zufallsgröße lassen sich wichtige Kenngrößen wie der Erwartungswert, die Varianz und die Standardabweichung relativ einfach berechnen. Das sehen wir uns im Folgenden an.
Binomialverteilung – Erwartungswert
Der Erwartungswert $E(X)$ oder $\mu$ einer binomialverteilten Zufallsgröße kann mit folgender Formel berechnet werden:
$\mu = n \cdot p$
Dabei ist $n$ die Anzahl der Versuche und $p$ ist die Trefferwahrscheinlichkeit.
Binomialverteilung – Varianz
Die Varianz $V(X)$ oder $\sigma^2$ einer binomialverteilten Zufallsgröße kann wie folgt berechnet werden:
$\sigma^2 = \mu \cdot (1-p) = n \cdot p \cdot (1-p)$
Auch hier ist $n$ die Anzahl der Versuche und $p$ ist die Trefferwahrscheinlichkeit.
Binomialverteilung – Standardabweichung
Die Standardabweichung $\sigma$ ist die Wurzel aus der Varianz. Also gilt:
$\sigma=\sqrt{\mu\cdot (1-p)}=\sqrt{n\cdot p\cdot (1-p)}$.
Neben diesen Kenngrößen sagen auch schon die Werte der Parameter $p$ und $n$ einiges über die Binomialverteilung aus:
- Die Binomialverteilung ist symmetrisch für $p=0{,}5$. Der Erwartungswert liegt dann genau in der Mitte der Verteilung bzw. des Histogramms.
- Der Erwartungswert verschiebt sich in Abhängigkeit der Trefferwahrscheinlichkeit $p$:
Für $0 \leq p < 0{,}5$ liegt der Erwartungswert weiter links und für $0{,}5 < p \leq 1$ weiter rechts. - Für größere $n$ wird die Wahrscheinlichkeitsverteilung immer flacher. Die Binomialverteilung verändert sich also auch mit der Länge $n$ der Bernoulli‑Kette (der Anzahl der Versuche).
- Für sehr große $n$ oder wenn $n$ gegen $\infty$ geht, nimmt die Binomialverteilung die Form der Normalverteilung an.
Kumulierte Binomialverteilung
Um kumulierte Wahrscheinlichkeiten zu berechnen, wird die kumulierte Binomialverteilung genutzt.
Immer wenn die Problemstellung lautet, wie groß die Wahrscheinlichkeit dafür ist, dass höchstens $k$ Treffer erzielt werden, brauchen wir die kumulierte Wahrscheinlichkeit. Das bedeutet, wir müssen alle Wahrscheinlichkeiten der Ereignisse
$P(X \leq k) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + … + P(X=k)$
Mit einem Taschenrechner ist es in der Regel nicht nötig, die einzelnen Wahrscheinlichkeiten für verschiedene Trefferzahlen zu berechnen. Es kann direkt die Wahrscheinlichkeit $P(X \leq k)$ mit einem gegebenen $k$ eingetippt und berechnet werden, sofern $n$ und $p$ bekannt sind.
Auch in den meisten stochastischen Tabellen und Tafelwerken sind neben den Werten der Wahrscheinlichkeiten für verschiedene Trefferzahlen auch die Werte der entsprechenden kumulierten Wahrscheinlichkeiten in Abhängigkeit von $n$, $p$ und $k$ aufgelistet.
Binomialverteilung berechnen
Wir gehen nun anhand eines Beispiels durch, wie man mit der Binomialverteilung rechnet und die Wahrscheinlichkeitsverteilungen binomialverteilter Zufallsgrößen berechnet.
Binomialverteilung – Beispiel: Ziehen mit Zurücklegen
In einer Urne befinden sich fünf Kugeln, eine rote und vier blaue. Es wird $10$ mal eine Kugel mit Zurücklegen aus der Urne gezogen.
Urnenmodell: Urne mit einer roten und vier blauen Kugeln, Ziehen mit Zurücklegen |
---|
Die Zufallsgröße $X$ beschreibt die Anzahl der gezogenen roten Kugeln (Treffer) bei $10$ Versuchen. Da es pro Versuch nur zwei mögliche Ergebnisse gibt (rot und nicht rot) und durch das Zurücklegen die Trefferwahrscheinlichkeit bei jedem Versuch gleich bleibt, handelt es sich um eine binomialverteilte Zufallsgröße. Es gilt $p=\frac{1}{5}=0{,}2$ und $n=10$.
Folgende Kenngrößen können wir berechnen:
- Der Erwartungswert ist $\mu = n \cdot p = 10 \cdot 0{,}2 = 2$
- Die Standardabweichung ist $\sigma=\sqrt{\mu\cdot (1-p)}=\sqrt{10 \cdot 0{,}2 \cdot 0{,}8} = \sqrt{1{,}6} \approx 1{,}26$
Für jede mögliche Trefferzahl $k$ zwischen $0$ und $10$ können wir die zugehörige Wahrscheinlichkeit $P(X=k)$ berechnen. Wir tun dies einmal beispielhaft für $k = 3$ Treffer:
$B_{n,p}(k) = B_{10;0{,}2}(k) = P(X=k) = \displaystyle \binom{10}{k} \cdot 0{,}2^{k} \cdot (1-0{,}2)^{10-k}$
$P(X=3) = \displaystyle \binom{10}{3} \cdot 0{,}2^{3} \cdot 0{,}8^{7} \approx 0{,}20$
Wenn wir die Wahrscheinlichkeiten aller möglichen Trefferzahlen berechnen, erhalten wir folgende Binomialverteilung:
Histogramm der binomialverteilten Zufallsgröße $X$ |
---|
Hier können wir den Erwartungswert gut erkennen, es ist der höchste Balken.
Das Histogramm ist nicht symmetrisch, der Erwartungswert $\mu$ liegt relativ weit links bei $k = 2$, weil $0 \leq p = 0{,}2 < 0{,}5$ ist.
Um die Wahrscheinlichkeit für höchstens $3$ Treffer zu berechnen, müssen wir die Wahrscheinlichkeiten für keinen $\left( P(X=0) \right)$, einen $\left( P(X=1) \right)$, zwei $\left( P(X=0) \right)$ und drei $\left( P(X=0) \right)$ Treffer addieren. Wir berechnen also:
$P(X=0) = \displaystyle \binom{10}{0} \cdot 0{,}2^{0} \cdot 0{,}8^{10} \approx 0{,}11$
$P(X=1) = \displaystyle \binom{10}{1} \cdot 0{,}2^{1} \cdot 0{,}8^{9} \approx 0{,}27$
$P(X=2) = \displaystyle \binom{10}{2} \cdot 0{,}2^{2} \cdot 0{,}8^{8} \approx 0{,}30$
Damit erhalten wir:
$P(X \leq 3) = P(X=0) + P(X=1) + P(X=2) + P(X=3) = 0{,}88$
Damit ist auch klar, dass die Wahrscheinlichkeit für mindestens $4$ Treffer $P(X\geq 4) = 0{,}12$ betragen muss. Denn diese beiden Ereignisse schließen sich gegenseitig aus und müssen zusammen den Wert $1$ ergeben, da sie alle möglichen Ergebnisse bzw. Trefferzahlen einschließen.
Negative Binomialverteilung
Die Binomialverteilung wirkt auf den ersten Blick recht theoretisch, sie ist aber für sehr viele statistische Prozesse von großer Bedeutung. Daneben werden auch die negative Binomialverteilung (die sogenannte Pascal‑Verteilung) und die Poisson‑Verteilung vielfach praktisch angewendet. Zum Beispiel nutzen Versicherungen diese Verteilungen, um Schadenzahlverteilungen aufzustellen. So können verschiedene Risiken eingeschätzt und ihre Kosten berechnet werden.
Binomialverteilung – Aufgaben
Die Binomialverteilung bezieht sich auf eine Bernoulli‑Kette, also auf eine Aneinanderreihung von Bernoulli‑Experimenten. Die einzelnen Experimente werden Versuche genannt.
Die Gesamtzahl der Versuche wird mit $n$ angegeben – $n$ ist also eine natürliche Zahl und die Länge der Bernoulli‑Kette.
Jeder Versuch hat genau zwei mögliche Ausgänge – Erfolg oder Misserfolg bzw. Treffer oder Nichttreffer.
Die Erfolgswahrscheinlichkeit bzw. Trefferwahrscheinlichkeit wird mit $p$ angegeben – $p$ ist also eine Zahl zwischen $0$ und $1$, die die Wahrscheinlichkeit angibt, einen Erfolg bzw. Treffer bei einem einzelnen Versuch zu erzielen.
Die Anzahl der Erfolge bzw. Treffer in einer Bernoulli‑Kette wird mit $k$ angeben – $k$ ist also die tatsächliche oder gewünschte Anzahl an Erfolgen/Treffern, die bei einer Reihe von Versuchen erzielt wurde oder erzielt werden soll.
Hier sind nur die Ergebnisse Sechs (Treffer) oder Nicht-Sechs (Nichttreffer) entscheidend. Die Wahrscheinlichkeit für das Werfen einer Sechs bleibt immer gleich – nämlich beim Wert $p = \frac{1}{6}$.
Wir können das Würfeln also als Bernoulli‑Experiment bzw. das zehnmalige Würfeln als Bernoulli‑Kette der Länge $n = 10$ mit der Trefferwahrscheinlichkeit $p = \frac{1}{6}$ betrachten.
Also können wir die Wahrscheinlichkeit für genau drei Treffer mit der Formel von Bernoulli berechnen:
$B_{n,p}(k) = B_{10,\frac{1}{6}} = P(X=k) = \displaystyle \binom{10}{k} \cdot \left(\frac{1}{6}\right)^{k} \cdot \left(1-\frac{1}{6}\right)^{10-k}$
$P(X=3) = \displaystyle \binom{10}{3} \cdot \left(\frac{1}{6}\right)^{3} \cdot \left(\frac{5}{6}\right)^{7} \approx 0{,}16$
Die Wahrscheinlichkeit, bei zehn Würfen genau dreimal eine Sechs zu würfeln, liegt bei einem Wert von rund $0{,}16$.
Auch hier sind nur die Ergebnisse Sechs (Treffer) oder Nicht-Sechs (Nichttreffer) entscheidend. Die Wahrscheinlichkeit für das Werfen einer Sechs bleibt weiterhin gleich – nämlich beim Wert $p = \frac{1}{6}$.
Wir können das Würfeln also wieder als Bernoulli‑Experiment bzw. das zehnmalige Würfeln als Bernoulli‑Kette der Länge $n = 10$ mit der Trefferwahrscheinlichkeit $p = \frac{1}{6}$ betrachten.
Um die Wahrscheinlichkeit für mindestens drei Treffer zu berechnen, müssen wir eine kumulierte Wahrscheinlichkeit betrachten.
Wir müssen die Wahrscheinlichkeiten für drei, vier, fünf, ... bis zehn Treffer mit der Formel von Bernoulli berechnen und diese dann addieren.
Leichter ist es allerdings, die Wahrscheinlichkeiten für null, einen und zwei Treffer zu berechnen und diese dann von $1$ abzuziehen. Denn die Ereignisse höchstens zwei Treffer und mindestens drei Treffer sind Gegenereignisse, das heißt, sie schließen sich gegenseitig aus und ergeben zusammen $1$.
Also rechnen wir:
$B_{n,p}(k) = B_{10,\frac{1}{6}} = P(X=k) = \displaystyle \binom{10}{k} \cdot \left(\frac{1}{6} \right)^{k} \cdot \left(1-\frac{1}{6}\right)^{10-k}$
$P(X=0) = \displaystyle \binom{10}{0} \cdot \left(\frac{1}{6}\right)^{0} \cdot \left(\frac{5}{6}\right)^{10} \approx 0{,}16$
$P(X=1) = \displaystyle \binom{10}{1} \cdot \left(\frac{1}{6}\right)^{1} \cdot \left(\frac{5}{6}\right)^{9} \approx 0{,}32$
$P(X=2) = \displaystyle \binom{10}{2} \cdot \left(\frac{1}{6}\right)^{2} \cdot \left(\frac{5}{6}\right)^{8} \approx 0{,}29$
Die Wahrscheinlichkeit $P(X \leq 2)$ für höchstens zwei Treffer beträgt also:
$P(X \leq 2) = P(X=0) + P(X=1) + P(X=2)$
$P(X \leq 2) = 0{,}16 + 0{,}32 + 0{,}29 = 0{,}77$
Damit beträgt die Wahrscheinlichkeit $P(X \geq 3)$ für höchstens drei Treffer:
$P(X \geq 3) = 1 - P(X \leq 2) = 1 - 0{,}77 = 0{,}23$
Die Wahrscheinlichkeit, bei zehn Würfen mindestens dreimal eine Sechs zu würfeln, liegt bei einem Wert von rund $0{,}23$.
Da es nur zwei mögliche Ausgänge eines Münzwurfs gibt und die Trefferwahrscheinlichkeit bei jedem Münzwurf gleich groß ist, handelt es sich bei den neun Münzwürfen um eine Bernoulli‑Kette der Länge $n = 9$.
Die Trefferwahrscheinlichkeit liegt bei $p = 0{,}5$ denn sowohl Kopf (Treffer) als auch Zahl (Nichtreffer) sind gleich wahrscheinlich.
Wir können also die einfache Formel für den Erwartungswert $\mu$ anwenden und einsetzen:
$\mu = n \cdot p = 9 \cdot 0{,}5 = 4{,}5$
Natürlich ist es nicht möglich, $4{,}5$ mal Kopf zu werfen. Wir können entweder $4$ oder $5$ mal Kopf werden. Formell gesehen sind aber eben $4{,}5$ Treffer zu erwarten – das ist der korrekte Erwartungswert bei $9$ Würfen.
Ähnliches gilt für die Varianz und die Standardabweichung, die wir ebenfalls mit den entsprechenden Formel berechnen können:
$\sigma^2=\mu\cdot (1-p)=4{,}5 \cdot (1-0{,}5) = 2{,}25$
$\sigma=\sqrt{\mu\cdot (1-p)}=\sqrt{4{,}5 \cdot 0{,}5} = 1{,}5$
Die Standardabweichung $\sigma = 1{,}5$ bezüglich des Erwartungswertes $\mu = 4{,}5$ bedeutet, dass wir bei $9$ Münzwürfen mit großer Wahrscheinlichkeit mit einem Ergebnis zwischen $3$ und $6$ Treffern rechnen können.
Ausblick – das lernst du nach Binomialverteilung
Vertiefe dein Verständnis für die Binomialverteilung mit den Themen Erwartungswert und Standardabweichung und kumulierte Wahrscheinlichkeiten bei einer Binomialverteilung. Gucke dir außerdem an, wie die unterschiedlichen Parameter wie $n$, $k$ oder $p$ bei einer Binomialverteilung bestimmt werden.
Zusammenfassung – Binomialverteilung
- Die Binomialverteilung bildet die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße ab.
- Eine Reihe von Zufallsversuchen kann durch eine binomialverteilte Zufallsgröße abgebildet werden, wenn jeder Versuch genau zwei mögliche Ergebnisse hat (die sich gegenseitig ausschließen) – wobei die Wahrscheinlichkeit für einen Treffer bei jedem Versuch gleich bleibt.
- Mit der Formel für die Binomialverteilung $B_{n,p}(k)$ lässt sich berechnen, mit welcher Wahrscheinlichkeit $P(X=k)$ eine bestimmte Anzahl an Treffern $k$ bei einer gegebenen Anzahl von Versuchen $n$ und einer Trefferwahrscheinlichkeit $p$ (pro Versuch) eintritt:
$P(X=k) = B_{n,p}(k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
$\qquad \text{mit~} p \in [0,1] ; k \in [0,1,2,...,n]$ - Ist eine kumulierte Wahrscheinlichkeit gesucht, müssen einzelne Wahrscheinlichkeiten für verschiedene Trefferzahlen addiert werden:
$P(X \leq k) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + … + P(X=k)$
Häufig gestellte Fragen zum Thema Binomialverteilung
Die Binomialverteilung ist eine diskrete Wahrscheinlichkeitsverteilung, mit der man die Wahrscheinlichkeiten verschiedener Ergebnisse von Bernoulli‑Ketten berechnen kann.
Es handelt sich bei der Wahrscheinlichkeitsverteilung eines Experiments um eine Binomialverteilung, wenn es sich bei dem Experiment um eine Aneinanderreihung von Bernoulli‑Experimenten handelt – also eine Bernoulli‑Kette von gleichen, voneinander unabhängigen Zufallsversuchen, die jeweils genau zwei mögliche Ausgänge haben: Erfolg und Misserfolg bzw. Treffer und Nichttreffer. Dabei bleibt die Trefferwahrscheinlichkeit von Versuch zu Versuch gleich.
Ein binomialverteiltes Experiment ensteht also durch die $n$‑fache Wiederholung eines Bernoulli‑Experiments.
Die Bernoulli‑Verteilung ist nicht das Gleiche wie die Binomialverteilung! Obwohl die Binomialverteilung mit der Formel von Bernoulli berechnet werden kann und auf Bernoulli‑Experimenten beruht, gibt es einen deutlichen Unterschied:
Die Bernoulli‑Verteilung beschreibt die Verteilung der Wahrscheinlichkeiten bei einem einzigen Versuch mit nur zwei möglichen Ausgängen (Bernoulli‑Experiment). In dieser Hinsicht stellt die Bernoulli‑Verteilung einen Sonderfall der Binomialverteilung für $n = 1$ dar. Während ein Bernoulli‑Experiment aus einem Versuch besteht, handelt es sich bei einem binomialverteilten Zufallsexperiment um eine $n$‑fache Wiederholung eines Bernoulli‑Experiments.
So kann die Bernoulli‑Verteilung beispielsweise bei einem Münzwurf nur die Wahrscheinlichkeit für Treffer und Nichtreffer bei einem einzigen Wurf beschreiben $\left( p = 0{,} 5 \text{ und } (1-p) = 0{,}5 \right)$, während die Binomialverteilung die Wahrscheinlichkeit vieler verschiedener Kombinationen von Treffern und Nichtreffern bei $n$ Münzwürfen abbilden kann.
Von einer Binomialverteilung spricht man, wenn ein Bernoulli‑Experiment mit den zwei möglichen Ausgängen Treffer/Erfolg und Nichttreffer/Misserfolg und der zugehörigen Trefferwahrscheinlichkeit $p$ (bzw. $1-p$) mehrfach durchgeführt wird – mit einer bestimmten Anzahl von $n$ (voneinander unabhängigen) Versuchen.
Die Binomialverteilung ist eine Wahrscheinlichkeitsverteilung, die abbildet, mit welchen Wahrscheinlichkeiten dabei verschiedene Anzahlen von Treffern $k$ auftreten.
Der Parameter $n$ steht bei einer binomialverteilten Zufallsgröße für die Anzahl der Versuche/Durchführungen/Ziehungen/Würfe etc.
Der Parameter $p$ beschreibt die Wahrscheinlichkeit eines Treffers/Erfolgs bei einem einzelnen Versuch und $k$ steht für die Anzahl der Treffer bei $n$ Versuchen.
Die Binomialverteilung ist eine diskrete Wahrscheinlichkeitsverteilung. Sie beschreibt ein Ziehen mit Zurücklegen im Urnenmodell, wenn nur zwei mögliche Ausgänge betrachtet werden: Treffer (erwünschte Kugel) und Nichtreffer (unerwünschte Kugel).
Ein solches Zufallsexperiment mit nur zwei möglichen Ausgängen ist ein Bernoulli‑Experiment.
Wird ein Bernoulli‑Experiment $n$‑fach wiederholt, folgen die Wahrscheinlichkeiten der auftretenden Treffer der Binomialverteilung. Die $n$‑fache Wiederholung eines Bernoulli‑Experiments (Bernoulli‑Kette) kann demnach als eine binomialverteilte Zufallsgröße angesehen werden.
Nur Bernoulli‑Ketten (bei denen die einzelnen Bernoulli‑Experimente voneinander unabhängig sind, also die Trefferwahrscheinlichkeit von Versuch zu Versuch gleich bleibt) können binomialverteilt sein. Für andere Zufallsversuche gilt die Binomialverteilung nicht.
Die Binomialverteilung einer Bernoulli‑Kette lässt sich durch die Formel von Bernoulli ausdrücken:
$B_{n,p}(k) = P(X=k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
$\qquad \text{mit~} p \in [0,1] ; k \in [0,1,2,...,n]$
Die Binomialverteilung $B_{n,p}(k)$ bildet die Wahrscheinlichkeitsverteilung $P(X=k)$ einer binomialverteilten Zufallsgröße $X$ ab. Durch sie können die Wahrscheinlichkeiten aller möglichen Anzahlen von Treffern $k$ berechnet werden.
Dafür muss die Anzahl $n$ der Versuche und die Wahrscheinlichkeit $p$ für das Ergebnis Treffer eines einzelnen Versuchs gegeben bzw. bekannt sein.
- $n$ ist die Anzahl der Versuche – also eine natürliche Zahl.
- $k$ ist die Anzahl der erzielten Treffer – also ebenfalls eine natürliche Zahl.
- $n-k$ ist die Anzahl der Nichtreffer.
- $p$ ist die Trefferwahrscheinlichkeit bei einem einzelnen Versuch.
Sie liegt zwischen $0$ und $1$. - $(1-p)$ ist die Wahrscheinlichkeit, einen Nichttreffer bei einem einzelnen Versuch zu erzielen.
Die Binomialverteilung gilt nur, wenn die Voraussetzungen einer Bernoulli‑Kette erfüllt sind:
- Es gibt bei $n$ Versuchen nur jeweils zwei mögliche Ergebnisse: Treffer (wird mit $k$ gezählt) und Nichttreffer.
- Die Trefferwahrscheinlichkeit $p$ bleibt von Versuch zu Versuch gleich. Die einzelnen Versuche sind also voneinander unabhängig.
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testenTranskript Binomialverteilung
"Binomialverteilung" was für ein Wort! Kann man ja mal so im Gespräch fallen lassen, einfach um Eindruck zu schinden! "Meine Erkenntnisse beruhen übrigens auf der BINOMIALVERTEILUNG." Da widerspricht dir keiner mehr. Sehr gut! Dann müssen wir jetzt nur noch selbst herausfinden, was es mit dieser "Binomialverteilung" auf sich hat. Um das zu verstehen, solltest du wissen, was ein Bernoulli-Experiment beziehungsweise eine Bernoulli-Kette ist und wie die Bernoulli-Formel lautet. Falls das nicht der Fall ist, schau dir das Thema am besten nochmal an. Hier kommt aber auch die Kurzfassung: Ein Bernoulli-Experiment ist ein Zufallsexperiment, bei dem wir nur zwischen zwei verschiedenen Ausgängen unterscheiden. "Treffer" oder "kein Treffer". Das klassische Beispiel hierzu ist der Münzwurf. Führen wir ein und dasselbe Bernoulli-Experiment (wie zum Beispiel eben den Münzwurf) MEHRFACH hintereinander aus, ergibt das eine Bernoulli-Kette. Und wenn wir dann die Wahrscheinlichkeit für "GENAU k Treffer" bei einer Bernoulli-Kette der "Länge n" mit der "Trefferwahrscheinlichkeit p" berechnen möchten, machen wir das mit DIESER Formel, der Bernoulli-Formel. Jetzt könnte man ja mal hingehen und die Wahrscheinlichkeiten für jede mögliche Anzahl an Treffern zu einer gegebenen Bernoulli-Kette ausrechnen. Das läuft dann darauf hinaus, eine Wahrscheinlichkeitsverteilung für diese Bernoulli-Kette aufzustellen. Und wie die dann aussieht, schauen wir uns jetzt mal genauer an. Eine Bernoulli-Kette ist eine BINOMIALVERTEILTE Zufallsgröße. Das "bi" in binomial steht für die ZWEI möglichen Ausgänge: Erfolg oder Misserfolg. Die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße nennen wir daher "BINOMIALverteilung". Sie ordnet jeder möglichen "Trefferanzahl k", die minimal bei Null und maximal bei n liegt, die zugehörige Wahrscheinlichkeit zu. Also die Wahrscheinlichkeit dafür, dass es genau "X gleich k" Treffer gibt. Wie jede andere Wahrscheinlichkeitsverteilung auch, ist die Binomialverteilung somit eine Zuordnung beziehungsweise eine Funktion. Und praktischerweise kennen wir sogar die Funktionsgleichung! Sie ist durch die Bernoulli-Formel gegeben und wird mit einem großen B sowie den Parametern n und p angegeben. Die unabhängige Variable unserer Funktion ist die "Trefferanzahl k", der dann durch die Bernoulli-Formel die entsprechende Wahrscheinlichkeit zugeordnet wird. Genug Theorie! Jetzt rechnen wir mal ganz konkret nach! Wir werfen eine Münze dreimal hintereinander. Wir haben also eine Bernoulli-Kette der Länge "n gleich drei". Die Trefferwahrscheinlichkeit kennen wir ebenfalls. Sie liegt bei "p gleich 0,5". Das sind dann auch schon alle Informationen, die wir brauchen, um uns die Binomialverteilung dieser Bernoulli-Kette anzuschauen. Weil wir das Zufallsexperiment insgesamt dreimal ausführen, können wir entweder null, einen, zwei oder drei Treffer landen. Die Wahrscheinlichkeiten für diese vier verschiedenen Trefferzahlen können wir jetzt mit Hilfe der Funktionsgleichung (sprich der Bernoulli-Formel) berechnen. Wir setzen dafür einfach die entsprechenden Werte ein. Zunächst die Werte für n und p, denn die sind als Parameter immer gleich. Dann setzen wir "k gleich null" und anschließend auch die anderen möglichen Trefferzahlen in unsere Formel ein. Bei diesen Rechnungen kann uns unser Taschenrechner einiges an Arbeit sparen! Der klassische Befehl, der auf den meisten Modellen verfügbar ist, lautet "binomPdf". Wir müssen auch im Taschenrechner die entsprechenden Werte für n, p und k einsetzen und der spuckt uns dann direkt das Ergebnis aus! Haben wir die Wahrscheinlichkeiten für alle Trefferzahlen ausgerechnet, steht unsere Binomialverteilung. Wir können sie, wie hier, in Form einer Tabelle angeben. Sehr häufig wird sie aber auch in Form eines Schaubildes, genauer gesagt in Form eines Histogramms dargestellt. Die Höhe jeder Säule steht hier für die Wahrscheinlichkeit, mit der die entsprechende Trefferanzahl eintritt. Die Darstellung von Binomialverteilungen durch Histogramme ist sehr anschaulich. Daher werden dir diese Schaubilder bei dem Thema immer wieder über den Weg laufen. Hier siehst du zum Beispiel das entsprechende Histogramm für einen vierfachen, einen zehnfachen und einen zwanzigfachen Münzwurf. Wenn wir uns die Histogramme genau anschauen, fällt auf, dass sie alle die gleiche Grundform haben. Außerdem fällt auf, dass alle Histogramme symmetrisch sind. Die Symmetrie kommt durch die zugrundeliegende Trefferwahrscheinlichkeit zustande, die bei allen Schaubildern fünfzig Prozent beträgt. Ändern wir die Trefferwahrscheinlichkeit zum Beispiel auf 0,75 hat das natürlich auch eine Auswirkung auf die resultierenden Schaubilder, die dann SO aussehen. An den Histogrammen lässt sich auch eine weitere wichtige Kenngröße der Binomialverteilung prima abschätzen: Der Erwartungswert. Den schauen wir uns aber lieber beim nächsten Mal an und fassen erstmal das Wichtigste zur Binomialverteilung auf einen Blick zusammen. Eine Binomialverteilung ist die Wahrscheinlichkeitsverteilung einer Bernoulli-Kette, also einer binomialverteilten Zufallsgröße. Bei dieser Zufallsgröße werden der Anzahl an Treffern, die bei "n" Versuchsdurchführungen erzielt werden können, die entsprechenden Wahrscheinlichkeiten zugeordnet. Wir können die Wahrscheinlichkeit für eine bestimmte "Trefferanzahl k" mit der Bernoulli-Formel berechnen. Dabei hilft uns dann im Normalfall der Taschenrechner, genauer gesagt der Befehl "binomPdf". Eine Binomialverteilung wird außerdem häufig in Form eines Histogramms dargestellt. An der Höhe der einzelnen Säulen lassen sich hier die Wahrscheinlichkeiten für die entsprechenden Trefferzahlen ablesen. Summieren wir all diese Wahrscheinlichkeiten auf, erhalten wir (wie bei jeder Wahrscheinlichkeitsverteilung) genau eins beziehungsweise einhundert Prozent. So, jetzt haben wir diesen unglaublich intelligent klingenden Begriff mit ein bisschen Leben gefüllt und DU kannst bei der nächsten Gelegenheit mal testen, wie gut er als Gesprächsstoff taugt. Viel Spaß dabei!
Binomialverteilung Übung
-
Charakterisiere die Binomialverteilung.
TippsVier Aussagen sind richtig.
Eine unabhängige Variable ändert sich innerhalb der Funktionsgleichung. Dieser wird ein bestimmter Wert zugeordnet.
Achte darauf, welche Zahlen sich in dem Beispiel ändern und überlege, welche Variable in der Formel für die Zahlen steht:
$B_{3;~0,5} (0) = P (X = 0) = \displaystyle \binom{3}{0} \cdot 0,\!5^{0} \cdot (1-0,\!5)^{3-0}$
$B_{3;~0,5} (1) = P (X = 1) = \displaystyle \binom{3}{1} \cdot 0,\!5^{1} \cdot (1-0,\!5)^{3-1}$
$B_{3;~0,5} (2) = P (X = 2) = \displaystyle \binom{3}{2} \cdot 0,\!5^{2} \cdot (1-0,\!5)^{3-2}$
Die Bernoulli-Formel lautet:
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
LösungIn dieser Aufgabe definieren wir die Binomialverteilung. Dafür ist es wichtig zu überlegen, wann und wofür sie genutzt wird.
Eine Binomialverteilung ist die Wahrscheinlichkeitsverteilung einer Bernoulli-Kette, also einer binomialverteilten Zufallsgröße. Die binomialverteilte Zufallsgröße hat genau zwei Ausgänge, wobei wir diese als „Erfolg“ und „Misserfolg“ oder auch „Treffer“ und „kein Treffer“ betiteln. Die Erfolgswahrscheinlichkeit $p$ beschreibt dann die Wahrscheinlichkeit, dass ein Erfolg eintritt. Bei einer Bernoulli-Kette beschreibt die Zufallsgröße die Anzahl an Treffern, die bei $n$ Versuchsdurchführungen erzielt werden können. Wir können also die Wahrscheinlichkeit für eine bestimmte Trefferanzahl $k$ mit der Bernoulli-Formel berechnen.
Für unsere Aussagen bedeutet das Folgendes:
- Die Binomialverteilung ist die Wahrscheinlichkeitsverteilung eines Zufallsexperiments mit genau zwei Ausgängen.
- Die Binomialverteilung ordnet jeder möglichen Trefferzahl die dazugehörige Wahrscheinlichkeit zu.
- Die Binomialverteilung ordnet jeder möglichen Trefferzahl die dazugehörige Länge der Bernoulli-Kette zu.
- Die Funktionsgleichung der Binomialverteilung ist durch die binomischen Formeln gegeben.
- Die Funktionsgleichung der Binomialverteilung ist durch die Bernoulli-Formel gegeben.
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
- Als unabhängige Variable enthält die Funktionsgleichung der Binomialverteilung $k$.
$B_{n;~p} (0) = P (X = 0) = \displaystyle \binom{n}{0} \cdot p^{0} \cdot (1-p)^{n-0}$
- Als unabhängige Variable enthält die Funktionsgleichung der Binomialverteilung $p$.
- Als unabhängige Variable enthält die Funktionsgleichung der Binomialverteilung $n$.
$B_{3;~0,5} (0) = P (X = 0) = \displaystyle \binom{3}{0} \cdot 0,\!5^{0} \cdot (1-0,\!5)^{3-0}$
$B_{3;~0,5} (1) = P (X = 1) = \displaystyle \binom{3}{1} \cdot 0,\!5^{1} \cdot (1-0,\!5)^{3-1}$
$B_{3;~0,5} (2) = P (X = 2) = \displaystyle \binom{3}{2} \cdot 0,\!5^{2} \cdot (1-0,\!5)^{3-2}$
Eine Binomialverteilung wird anknüpfend an diese Rechnungen häufig in Form eines Histogramms dargestellt. An der Höhe der einzelnen Säulen lassen sich hier die Wahrscheinlichkeiten für die entsprechenden Trefferzahlen ablesen. Summieren wir alle diese Wahrscheinlichkeiten auf, erhalten wir (wie bei jeder Wahrscheinlichkeitsverteilung) genau ein beziehungsweise $100$ Prozent.
-
Gib das Vorgehen zum Erstellen einer Binomialverteilung wieder.
TippsÜberlege, welche Parameter in der Funktionsgleichung der Binomialverteilung immer gleich bleiben. Sie müssen zuerst feststehen.
Was brauchst du als unabhängige Variable zusätzlich, um mit der Funktionsgleichung die entsprechenden Wahrscheinlichkeiten auszurechnen?
LösungIn dieser Aufgabe bringen wir die Schritte zum Erstellen einer Binomialverteilung in die richtige Reihenfolge.
Die allgemeine Funktionsgleichung der Binomialverteilung ist durch die Bernoulli-Formel gegeben:
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
Sie enthält die Trefferwahrscheinlichkeit $p$ und die Länge der Bernoulli-Kette bzw. Gesamtanzahl der Versuche $n$ als gleichbleibende Parameter sowie die unabhängige Variable $k$, welche für die Trefferanzahl steht.
Als Beispiel betrachten wir das dreimalige Werfen einer Münze.
Schritt 1: Bestimmen der Länge der Bernoulli-Kette $n$ und der Trefferwahrscheinlichkeit $p$.
Da wir die Münze dreimal werfen, ergibt sich:
- $n = 3$
- $p = 0,\!5$
Das sind dann auch schon alle Informationen, die wir brauchen, um uns die Binomialverteilung dieser Bernoulli-Kette anzuschauen:
$B_{3;~0,5} (k) = P (X = k) = \displaystyle \binom{3}{k} \cdot 0,\!5^{k} \cdot (1-0,\!5)^{3-k}$
Schritt 2: Festlegen der möglichen Trefferanzahlen $k$.
Weil wir das Zufallsexperiment insgesamt dreimal ausführen, können wir entweder null, einen, zwei oder drei Treffer landen.
Schritt 3: Werte in die Bernoulli-Formel einsetzen und Wahrscheinlichkeiten für jede Trefferzahl berechnen.
Die Wahrscheinlichkeiten für diese vier verschiedenen Trefferzahlen können wir jetzt mithilfe der Funktionsgleichung (sprich der Bernoulli-Formel) berechnen. Der Wert für $k$ wird in die Funktionsgleichung eingesetzt und die entsprechende Wahrscheinlichkeit errechnet:
$B_{3;~0,5} (0) = P (X = 0) = \displaystyle \binom{3}{0} \cdot 0,\!5^{0} \cdot (1-0,\!5)^{3-0} = 0,\!125$
$B_{3;~0,5} (1) = P (X = 1) = \displaystyle \binom{3}{1} \cdot 0,\!5^{1} \cdot (1-0,\!5)^{3-1} = 0,\!375$
$B_{3;~0,5} (2) = P (X = 2) = \displaystyle \binom{3}{2} \cdot 0,\!5^{2} \cdot (1-0,\!5)^{3-2} = 0,\!375$
$B_{3;~0,5} (3) = P (X = 3) = \displaystyle \binom{3}{3} \cdot 0,\!5^{3} \cdot (1-0,\!5)^{3-3} = 0,\!125$
Bei diesen Rechnungen kann uns unser Taschenrechner einiges an Arbeit sparen: Der klassische Befehl, der auf den meisten Modellen verfügbar ist, lautet binomPdf. Wir müssen anschließend im Taschenrechner die entsprechenden Werte für $n$, $p$ und $k$ einsetzen.
Schritt 4: Eintragen der errechneten Wahrscheinlichkeiten in eine Tabelle bzw. in ein Histogramm.
Haben wir die Wahrscheinlichkeiten für alle Trefferzahlen ausgerechnet, steht unsere Binomialverteilung. Wir können sie – wie hier – in Form einer Tabelle angeben:
$\begin{array}{c|c|c|c|c} k & 0 & 1 & 2 & 3 \\ \hline P (X=k) & 0,\!125 & 0,\!375 & 0,\!375 & 0,\!125 \\ \end{array}$
Sehr häufig wird sie aber auch in Form eines Schaubildes, genauer gesagt in Form eines Histogramms, dargestellt: Die Höhe jeder Säule steht für die Wahrscheinlichkeit, mit der die entsprechende Trefferanzahl eintritt.
Die Darstellung von Binomialverteilungen durch Histogramme ist sehr eingängig. Daher werden dir diese Schaubilder bei dem Thema immer wieder begegnen. -
Stelle die Funktionsgleichungen auf.
TippsÜberlege, welche Positionen $n$ und $p$ in der Funktionsgleichung der Binomialverteilung haben.
Die Funktionsgleichung sieht allgemein folgendermaßen aus:
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
LösungIn dieser Aufgabe ordnen wir Parametern die passende Funktionsgleichung der Binomialverteilung zu. Hierfür nutzen wir die Gesamtanzahl der Durchführungen ($n$), die angegebene Trefferwahrscheinlichkeit ($p$) sowie die Funktionsgleichung der Binomialverteilung:
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
Es ergeben sich folgende Zuordnungen:
1. $n=7 \quad\vert\quad p=0,\!2$
$B_{7;~0,2} (k) = P (X = k) = \displaystyle \binom{7}{k} \cdot 0,\!2^{k} \cdot (1-0,\!2)^{7-k} = \color{#99CC00}{\displaystyle \binom{7}{k} \cdot 0,\!2^k \cdot 0,\!8^{7-k}}$
$\begin{array}{ccccccccc} B_{7;~0,2} (0) &=& P (X = 0)& =& \displaystyle \binom{7}{0} & \cdot& 0,\!2^{0} &\cdot & (1-0,\!2)^{7-0} \\ &&& =& 1 & \cdot& 1 &\cdot & 0,\!2097\\ &&& \approx &0,\!21 \end{array}$
$\begin{array}{ccccccccc} B_{7;~0,2} (1) &=& P (X = 1)& =& \displaystyle \binom{7}{1} & \cdot& 0,\!2^{1} &\cdot & (1-0,\!2)^{7-1} \\ &&& =& 7 & \cdot& 0,\!2 &\cdot & 0,\!2621\\ &&& = & 0,\!3669 \\ &&& \approx &0,\!367 \end{array}$
$\begin{array}{cccccccc} B_{7;~0,2} (2) &=& P (X = 2)& =& \displaystyle \binom{7}{2} & \cdot& 0,\!2^{2} &\cdot & (1-0,\!2)^{7-2} \\ &&& =& 21 & \cdot& 0,\!04 &\cdot & 0,\!3277\\ &&& = & 0,\!2752 \\ &&& \approx &0,\!275 \end{array}$
Die Parameter gehören demnach zu folgender Binomialverteilung:
$\begin{array}{c|c|c|c} k & 0 & 1 & 2 \\ \hline P (X=k) & 0,\!21 & 0,\!367 & 0,\!275 \\ \end{array}$
2. $n=10 \quad\vert\quad p=0,\!5$
$B_{10;~0,5} (k) = P (X = k) = \displaystyle \binom{10}{k} \cdot 0,\!5^{k} \cdot (1-0,\!5)^{10-k} = \color{#99CC00}{\displaystyle \binom{10}{k} \cdot 0,\!5^{k} \cdot 0,\!5^{10-k}}$
$\begin{array}{ccccccccc} B_{10;~0,5} (0) &=& P (X = 0)& =& \displaystyle \binom{10}{0} & \cdot& 0,\!5^{0} &\cdot & (1-0,\!5)^{10-0} \\ &&& =& 1 & \cdot& 1 &\cdot & 0,\!0009\\ &&& \approx &0,\!001 \end{array}$
$\begin{array}{cccccccc} B_{10;~0,5} (1) &=& P (X = 1)& =& \displaystyle \binom{10}{1} & \cdot& 0,\!5^{1} &\cdot & (1-0,\!5)^{10-1} \\ &&& =& 10 & \cdot& 0,\!5 &\cdot & 0,\!0019\\ &&& = & 0,\!01 \\ \end{array}$
$\begin{array}{ccccccccc} B_{10;~0,5} (2) &=& P (X = 2)& =& \displaystyle \binom{10}{2} & \cdot& 0,\!5^{2} &\cdot & (1-0,\!5)^{10-2} \\ &&& =& 45 & \cdot& 0,\!25 &\cdot & 0,\!0039\\ &&& = & 0,\!2752 \\ &&& \approx &0,\!044 \end{array}$
Die Parameter gehören demnach zu folgender Binomialverteilung:
$\begin{array}{c|c|c|c} k & 0 & 1 & 2 \\ \hline P (X=k) & 0,\!001 & 0,\!01 & 0,\!044 \\ \end{array}$
3. $n=5 \quad\vert\quad p=0,\!25$
$B_{5;~0,25} (k) = P (X = k) = \displaystyle \binom{5}{k} \cdot 0,\!25^{k} \cdot (1-0,\!25)^{5-k} = \color{#99CC00}{\displaystyle \binom{5}{k} \cdot 0,\!25^{k} \cdot 0,\!75^{5-k}}$
$\begin{array}{ccccccccc} B_{5;~0,25} (0) &=& P (X = 0)& =& \displaystyle \binom{5}{0} & \cdot& 0,\!25^{0} &\cdot & (1-0,\!25)^{5-0} \\ &&& =& 1 & \cdot& 1 &\cdot & 0,\!2373\\ &&& \approx &0,\!237 \end{array}$
$\begin{array}{ccccccccc} B_{5;~0,25} (1) &=& P (X = 1)& =& \displaystyle \binom{5}{1} & \cdot& 0,\!25^{1} &\cdot & (1-0,\!25)^{5-1} \\ &&& =& 5 & \cdot& 0,\!25 &\cdot & 0,\!3164\\ &&& = & 0,\!3955 \\ &&& \approx &0,\!396 \end{array}$
$\begin{array}{ccccccccc} B_{5;~0,25} (2) &=& P (X = 2)& =& \displaystyle \binom{5}{2} & \cdot& 0,\!25^{2} &\cdot & (1-0,\!25)^{5-2} \\ &&& =& 10 & \cdot& 0,\!0625 &\cdot & 0,\!4219\\ &&& = & 0,\!2637 \\ &&& \approx &0,\!264 \end{array}$
Die Parameter gehören demnach zu folgender Binomialverteilung:
$\begin{array}{c|c|c|c} k & 0 & 1 & 2 \\ \hline P (X=k) & 0,\!237 & 0,\!396 & 0,\!264 \\ \end{array}$
4. $n=4 \quad\vert\quad p=0,\!75$
$B_{4;~0,75} (k) = P (X = k) = \displaystyle \binom{4}{k} \cdot 0,\!75^{k} \cdot (1-0,\!75)^{4-k} = \color{#99CC00}{\displaystyle \binom{4}{k} \cdot 0,\!75^{k} \cdot 0,\!25^{4-k}}$
$\begin{array}{ccccccccc} B_{4;~0,75} (0) &=& P (X = 0)& =& \displaystyle \binom{4}{0} & \cdot& 0,\!75^{0} &\cdot & (1-0,\!75)^{4-0} \\ &&& =& 1 & \cdot& 1 &\cdot & 0,\!0039\\ &&& \approx &0,\!004 \end{array}$
$\begin{array}{ccccccccc} B_{4;~0,75} (1) &=& P (X = 1)& =& \displaystyle \binom{4}{1} & \cdot& 0,\!75^{1} &\cdot & (1-0,\!75)^{4-1} \\ &&& =& 4 & \cdot& 0,\!75 &\cdot & 0,\!0156\\ &&& = & 0,\!0468 \\ &&& \approx &0,\!047 \end{array}$
$\begin{array}{cccccccc} B_{4;~0,75} (2) &=& P (X = 2)& =& \displaystyle \binom{4}{2} & \cdot& 0,\!75^{2} &\cdot & (1-0,\!75)^{4-2} \\ &&& =& 6 & \cdot& 0,\!5625 &\cdot & 0,\!0625\\ &&& = & 0,\!2109 \\ &&& \approx &0,\!211 \end{array}$
Die Parameter gehören demnach zu folgender Binomialverteilung:
$\begin{array}{c|c|c|c} k & 0 & 1 & 2 \\ \hline P (X=k) & 0,\!004 & 0,\!047 & 0,\!211 \\ \end{array}$
5. $n=6 \quad\vert\quad p=0,\!5$
$B_{6;~0,5} (k) = P (X = k) = \displaystyle \binom{6}{k} \cdot 0,\!5^{k} \cdot (1-0,\!5)^{6-k} = \color{#99CC00}{\displaystyle \binom{6}{k} \cdot 0,\!5^{k} \cdot 0,\!5^{6-k}}$
$\begin{array}{ccccccccc} B_{6;~0,5} (0) &=& P (X = 0)& =& \displaystyle \binom{6}{0} & \cdot& 0,\!5^{0} &\cdot & (1-0,\!5)^{6-0} \\ &&& =& 1 & \cdot& 1 &\cdot & 0,\!0156\\ &&& \approx &0,\!016 \end{array}$
$\begin{array}{ccccccccc} B_{6;~0,5} (1) &=& P (X = 1)& =& \displaystyle \binom{6}{1} & \cdot& 0,\!5^{1} &\cdot & (1-0,\!5)^{6-1} \\ &&& =& 6 & \cdot& 0,\!5 &\cdot & 0,\!0312\\ &&& = & 0,\!0936 \\ &&& \approx &0,\!094 \end{array}$
$\begin{array}{ccccccccc} B_{6;~0,5} (2) &=& P (X = 2)& =& \displaystyle \binom{6}{2} & \cdot& 0,\!5^{2} &\cdot & (1-0,\!5)^{6-2} \\ &&& =& 15 & \cdot& 0,\!25 &\cdot & 0,\!0625\\ &&& = & 0,\!2344 \\ &&& \approx &0,\!234 \end{array}$
Die Parameter gehören demnach zu folgender Binomialverteilung:
$\begin{array}{c|c|c|c} k & 0 & 1 & 2 \\ \hline P (X=k) & 0,\!016 & 0,\!094 & 0,\!234 \\ \end{array}$
Mit dem Taschenrechner kannst du die Werte überprüfen. Er kann dir außerdem helfen, die einzelnen Wahrscheinlichkeiten schneller zu errechnen. Hierfür ist folgender Befehl notwendig:
$\text{binomPdf}(n,p,k)$
-
Ermittle die Binomialverteilung.
TippsLies noch einmal genau:
- Wie oft wird insgesamt gezogen?
- Welcher Parameter steht für die Gesamtanzahl der Versuche und welche Trefferzahlen kann es geben?
Zähle, wie viele Kugeln es insgesamt gibt und wie viele als Treffer gelten.
Wären es beispielsweise zwölf Kugeln, von denen sechs als Treffer gelten, würde die Trefferwahrscheinlichkeit folgendermaßen errechnet werden:
$p= \dfrac{6}{12} = 0,\!5$
Nutze die Funktionsgleichung, um die Wahrscheinlichkeit für die einzelnen Trefferanzahlen $(k)$ zu berechnen:
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
Runde das Ergebnis. Es wird aufgerundet, wenn die vierte Stelle mindestens $5$ ist:
$B_{n;~p} (k) = 0,\!2365 \approx 0,\!237$
Ist die Zahl kleiner als $5$, wird abgerundet. Die Ziffer an der dritten Stelle bleibt gleich:
$B_{n;~p} (k) = 0,\!2364 \approx 0,\!236$
LösungIn dieser Aufgabe nutzen wir die Funktionsgleichung zum Berechnen der Wahrscheinlichkeit für verschiedene Trefferzahlen. Hierfür müssen wir die Funktionsgleichung der Binomialverteilung kennen. Sie lautet:
$B_{n;~p} (k) = P (X = k) = \displaystyle \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k}$
Die Funktionsgleichung ist durch die Bernoulli-Formel definiert und wird mit einem großen $B$ sowie den Parametern $n$ und $p$ angegeben.
Lea zieht sechsmal aus zehn Kugeln, wobei eine blaue Kugel als Treffer gilt. Da es zwei blaue Kugeln gibt, gilt:
- $n = 6$
- $p = \dfrac{2}{10} = 0,\!2$
Diese beiden Parameter bleiben in den Gleichungen für unsere Berechnung immer gleich:
$\begin{array}{cccccccc} B_{6;~0,2} (k) &=& P (X = k)& =& \displaystyle \binom{6}{k} & \cdot& 0,\!2^{k} &\cdot & (1-0,\!2)^{6-k} \\ & & & =& \displaystyle \binom{6}{k} & \cdot& 0,\!2^{k} &\cdot & (0,\!8)^{6-k} \end{array}$
Die unabhängige Variable unserer Funktion ist die Trefferanzahl $k$, der dann durch die Bernoulli-Formel die entsprechende Wahrscheinlichkeit zugeordnet wird. Es ergeben sich folgende Rechnungen:
$\underline{k = 0}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (0) &=& P (X = 0)& = &\displaystyle \binom{6}{0} & \cdot& 0,\!2^{0} &\cdot & (0,\!8)^{6-0} \\ &&& = &1 & \cdot& 1 &\cdot & 0,\!2621\\ &&& = &0,\!2621 \\ &&& \approx &0,\!262 \end{array}$$\underline{k = 1}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (1) &=& P (X = 1)& =& \displaystyle \binom{6}{1} & \cdot& 0,\!2^{1} &\cdot & (0,\!8)^{6-1} \\ &&& =& 6 & \cdot& 0,\!2 &\cdot & 0,\!3276\\ &&& =& 0,\!3931 \\ &&& \approx& 0,\!393 \end{array}$$\underline{k = 2}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (2) &=& P (X = 2)& =& \displaystyle \binom{6}{2} & \cdot& 0,\!2^{2} &\cdot & (0,\!8)^{6-2} \\ &&& = &15 & \cdot& 0,\!04 &\cdot & 0,\!4096\\ &&& =& 0,\!2457 \\ &&& \approx &0,\!246 \\ \end{array}$$\underline{k = 3}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (3) &=& P (X = 3)& =& \displaystyle \binom{6}{3} & \cdot& 0,\!2^{3} &\cdot & (0,\!8)^{6-3} \\ &&& = &20 & \cdot& 0,\!008 &\cdot & 0,\!512\\ &&& =& 0,\!0819 \\ &&& \approx& 0,\!082 \\ \end{array}$$\underline{k = 4}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (4) &=& P (X = 4)& = &\displaystyle \binom{6}{4} & \cdot& 0,\!2^{4} &\cdot & (0,\!8)^{6-4} \\ &&& \approx& 0,\!015 \\ \end{array}$$\underline{k = 5}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (5) &=& P (X = 5)& = &\displaystyle \binom{6}{5} & \cdot& 0,\!2^{5} &\cdot & (0,\!8)^{6-5} \\ &&& \approx& 0,\!002 \\ \end{array}$$\underline{k = 6}$:
$\begin{array}{ccccccccc} B_{6;~0,2} (6) &=& P (X = 6)& =& \displaystyle \binom{6}{6} & \cdot& 0,\!2^{6} &\cdot & (0,\!8)^{6-6} \\ &&& \approx& 0,\!000 \\ \end{array}$Mit dem Taschenrechner kannst du die Werte überprüfen. Er kann dir außerdem helfen, die einzelnen Wahrscheinlichkeiten schneller zu errechnen. Hierfür ist folgender Befehl notwendig:
$\text{binomPdf}(n,p,k)$
Achte darauf, dass im Taschenrechner Dezimalzahlen mit Punkt geschrieben werden und Kommata die einzelnen Variablen voneinander trennen. Für unsere Trefferzahlen würde das bedeuten:
$B_{n;~p} (0) \Rightarrow \text{binomPdf}(6,0.2,0) \quad\vert\quad B_{n;~p} (1) \Rightarrow \text{binomPdf}(6,0.2,1) \\ B_{n;~p} (2) \Rightarrow \text{binomPdf}(6,0.2,2)\quad\vert\quad B_{n;~p} (3) \Rightarrow \text{binomPdf}(6,0.2,3)$
-
Beschreibe die Grundlagen einer Binomialverteilung.
TippsDie einzelnen Inhalte der Fachbegriffe bauen von oben nach unten aufeinander auf.
Ein typisches Beispiel für ein Bernoulli-Experiment ist der Münzwurf. Überlege, wie viele mögliche Ausgänge es hierbei gibt.
LösungWir wiederholen in dieser Aufgabe die Grundlagen der Binomialverteilung. Sie sind wichtig, um die Verteilung zu verstehen und zu nutzen.
Ein Bernoulli-Experiment ist ein Zufallsexperiment, bei dem wir nur zwischen zwei verschiedenen Ausgängen unterscheiden. Das klassische Beispiel hierzu ist der Münzwurf.
Führen wir ein und dasselbe Bernoulli-Experiment mehrfach hintereinander aus (beispielsweise den Münzwurf), ergibt das eine** Bernoulli-Kette**. Eine Bernoulli-Kette steht für eine binomialverteilte Zufallsgröße.
Wenn wir die Wahrscheinlichkeit für genau $k$ Treffer bei einer Bernoulli-Kette der Länge $n$ mit der Trefferwahrscheinlichkeit $p$ berechnen möchten, dann machen wir das mit der Bernoulli-Formel. Sie wird also zum Berechnen der Wahrscheinlichkeit einer bestimmten Trefferanzahl $k$ genutzt und lautet:
$P (X = k)= \displaystyle \binom{n}{k} \cdot p^{k}\cdot (1- p)^{n-k}$
Das Auflisten der Wahrscheinlichkeiten für jede mögliche Anzahl an Treffern zu einer gegebenen Bernoulli-Kette heißt Binomialverteilung. „Bi-“ in „Binomial-“ steht für die zwei möglichen Ausgänge: Treffer oder kein Treffer. Die Wahrscheinlichkeitsverteilung ordnet jeder möglichen Trefferanzahl $k$, die minimal bei $0$ und maximal bei $n$ liegt, die zugehörige Wahrscheinlichkeit zu, also die Wahrscheinlichkeit dafür, dass es genau $X = k$ Treffer gibt. Wie jede andere Wahrscheinlichkeitsverteilung auch, ist die Binomialverteilung somit eine Zuordnung beziehungsweise eine Funktion. Sie ist durch die Bernoulli-Formel definiert und wird mit einem großen $B$ sowie den Parametern $n$ und $p$ angegeben. Die unabhängige Variable unserer Funktion ist die Trefferanzahl $k$, der dann durch die Bernoulli-Formel die entsprechende Wahrscheinlichkeit zugeordnet wird:
$B_{3;~0,5} (0) = P (X = 0) = \displaystyle \binom{3}{0} \cdot 0,\!5^{0} \cdot (1-0,\!5)^{3-0} = 0,\!125$
$B_{3;~0,5} (1) = P (X = 1) = \displaystyle \binom{3}{1} \cdot 0,\!5^{1} \cdot (1-0,\!5)^{3-1} = 0,\!375$
$B_{3;~0,5} (2) = P (X = 2) = \displaystyle \binom{3}{2} \cdot 0,\!5^{2} \cdot (1-0,\!5)^{3-2} = 0,\!375$
$B_{3;~0,5} (3) = P (X = 3) = \displaystyle \binom{3}{3} \cdot 0,\!5^{3} \cdot (1-0,\!5)^{3-3} = 0,\!125$
In einer Tabelle wird die Zuordnung folgendermaßen dargestellt:
$\begin{array}{c|c|c|c|c} k & 0 & 1 & 2 & 3 \\ \hline P (X=k) & 0,\!125 & 0,\!375 & 0,\!375 & 0,\!125 \\ \end{array}$
-
Leite die Parameter aus den Binomialverteilungen her.
TippsSchaue dir genau an, welche Werte das Histogramm abdeckt: Die Gesamtzahl $n$ ist mindestens so groß wie der letzte Balken am rechten Rand des Histogramms.
Abhängig von der Trefferwahrscheinlichkeit sehen Histogramme unterschiedlich aus. Sieh dir die Beispiele an:
Vergleiche die ersten Säulen neben dem gestrichelten Pfeil (Erwartungswert): Sind sie bei ${p=0,\!75}$ auf der linken (geringere Trefferanzahl) oder rechten (größere Trefferanzahl) Seite höher?
Die Säule, deren Trefferzahl am wahrscheinlichsten ist (höchste Säule), nennt man Erwartungswert. Du kannst sie durch folgende Rechnung ermitteln:
$E(X) = n \cdot p$
LösungIn dieser Aufgabe ordnen wir Histogrammen die passenden Parameter zu. Dafür ist es wichtig zu wissen, dass Histogramme eine Binomialverteilung grafisch darstellen. Da sie sehr anschaulich sind, werden sie häufig genutzt, um mithilfe der Säulenhöhe zu verdeutlichen, welche Trefferzahl wie wahrscheinlich ist. Die Form der Histogramme entspricht immer einer Glocke:
- $n$ legt dabei die Gesamtanzahl der Versuche und damit die maximale Trefferzahl fest. Man erkennt sie an dem Wert, der am weitesten rechts zu sehen ist.
- Die mit der größten Wahrscheinlichkeit auftretende Trefferzahl wird auch Erwartungswert $(E(X) = \mu)$ genannt.
- Für $p = 0,\!5$ liegen die Werte symmetrisch zum Erwartungswert. Immer eine Säule auf der linken und rechten Seite des Erwartungswertes sind also gleich groß.
- Bei $p < 0,\!5$ ist die erste Säule auf der linken Seite des Erwartungswertes höher als die erste Säule auf der rechten Seite. Die Verteilung ist linksschief.
- Wenn $p > 0,\!5$ ist, ist die erste Säule auf der rechten Seite des Erwartungswertes höher als die erste Säule auf der linken Seite. Die entsprechende Binomialverteilung ist rechtsschief.
Für unsere Zuordnung bedeutet das Folgendes:
Histogramm 1:
Die maximale Trefferzahl liegt bei $20$ und das Histogramm ist um den Erwartungswert herum symmetrisch. Es gehört demnach zu den Werten $n=20$ und $p=0,\!5$.
Zum Prüfen der Zuordnung kann der Erwartungswert oder eine andere Wahrscheinlichkeit zu einer Trefferanzahl berechnet werden:
$E(X) = \mu = 20 \cdot 0,\!5 = 10$
Histogramm 2:
Die maximale Trefferzahl liegt bei zehn und das Histogramm ist um den Erwartungswert nicht symmetrisch. Es gehört demnach zu den Werten $n=10$ und $p=0,\!25$.
Durch die Berechnung des Erwartungswertes wird deutlich, dass es linksschief ist:
$E(X) = \mu = 10 \cdot 0,\!25 = 2,\!5$
Histogramm 3:
Die maximale Trefferzahl liegt bei $20$ und das Histogramm ist rechtsschief. (Die Säulen auf der rechten Seite des Erwartungswertes sind höher als die auf der linken Seite.) Es gehört demnach zu den Werten $n=20$ und $p=0,\!75$.
Zum Prüfen der Zuordnung kann der Erwartungswert berechnet werden:
$E(X) = \mu = 20 \cdot 0,\!75 = 15$
Histogramm 4:
Die maximale Trefferzahl liegt bei fünf und das Histogramm ist linksschief. (Die Säulen auf der linken Seite des Erwartungswertes sind höher als die auf der rechten Seite.) Es gehört demnach zu den Werten $n=5$ und $p=0,\!2$.
Zum Prüfen der Zuordnung kann der Erwartungswert berechnet werden:
$E(X) = \mu = 5 \cdot 0,\!2 = 1$
Histogramm 5:
Die maximale Trefferzahl liegt bei $20$ und das Histogramm ist linksschief. (Die Säulen auf der linken Seite des Erwartungswertes sind höher als die auf der rechten Seite.) Es gehört demnach zu den Werten $n=20$ und $p=0,\!3$.
Zum Prüfen der Zuordnung kann der Erwartungswert berechnet werden:
$E(X) = \mu = 20 \cdot 0,\!3 = 6$
Histogramm 6:
Die maximale Trefferzahl liegt bei zehn und das Histogramm ist um den Erwartungswert herum symmetrisch. Es gehört demnach zu den Werten $n=10$ und $p=0,\!5$.
Zum Prüfen der Zuordnung kann der Erwartungswert berechnet werden:
$E(X) = \mu = 10 \cdot 0,\!5 = 5$
Binomialkoeffizient
Bernoulli-Formel
Binomialverteilung
Binomialverteilung – Erwartungswert und Standardabweichung
Binomialverteilung – kumulierte Wahrscheinlichkeiten
Binomialverteilung – Parameter n bestimmen
Binomialverteilung – Parameter k bestimmen
Binomialverteilung – Parameter p bestimmen
Binomialverteilung – Sigma-Regeln
Binomialverteilung – Verteilungstabelle
8.852
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.381
Lernvideos
36.063
Übungen
32.618
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen Berechnen
- Brüche Addieren
- Kongruenz
- Exponentialfunktion
- Exponentialfunktion Beispiel