3 Profile für Kinder Bis zu 3 Geschwisterprofile in einem Account anlegen
NEU - Badge
Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Körper in Prismen zerlegen – Oberflächeninhalt berechnen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Körper Prismen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.7 / 53 Bewertungen
Die Autor*innen
Avatar
Eva F.
Körper in Prismen zerlegen – Oberflächeninhalt berechnen
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Körper in Prismen zerlegen – Oberflächeninhalt berechnen

Hallo, in diesem Video erkläre ich dir, wie man den Oberflächeninhalt eines Körpers berechnet. Wir wiederholen dafür die Formel zur Berechnung des Oberflächeninhaltes eines Prismas und im Anschluss erkläre ich dir, wie man einen Körper in Prismen zerlegen kann. Danach erhältst du die Formel zur Berechnung des Oberflächeninhaltes eines Körpers. Diese Formel verwenden wir dann, um den Oberflächeninhalt eines Körpers zu berechnen, der aus drei verschiedenen Prismen zusammengesetzt ist. Zum Schluss erhältst du eine Zusammenfassung des Gelernten. Ich hoffe, das Video wird dir gefallen!

9 Kommentare
  1. Hallo Platti,
    F bezeichnet in diesem Video die Teile der Oberfläche, die sozusagen verdeckt sind und für die Berechnung der Oberfläche des Körpers nicht mit einberechnet werden. Wie du diese Flächen bezeichnest, kann unterschiedlich sein. Schau am besten mal in dein Schulbuch, wie diese Flächen dort bezeichnet werden. Es kann sein, dass ihr einen anderen Buchstaben als F verwendet. Ansonsten kannst du auch deinen Lehrer mal fragen. Orientiere dich am besten nach ihm/ihr.
    Viele Grüße aus der Redaktion

    Von Jonas D., vor mehr als 5 Jahren
  2. super erklärt nur eine frage muss man F verwenden

    Von Platti, vor mehr als 5 Jahren
  3. Ich fand es super gut erklärt und auch nicht unständlich

    Von Peter E., vor etwa 7 Jahren
  4. Das Video war sehr gut, aber ein bisschen kompliziert.

    Von C Arndt, vor mehr als 7 Jahren
  5. Ich finde die Übungen etwas verwirrend.
    ????????????????????????????????

    Von Noah 14, vor fast 9 Jahren
Mehr Kommentare

Körper in Prismen zerlegen – Oberflächeninhalt berechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Körper in Prismen zerlegen – Oberflächeninhalt berechnen kannst du es wiederholen und üben.
  • Beschreibe, wie du die Grund- und Deckfläche eines Prismas erkennst.

    Tipps

    Hier erkennst du ein sechseckiges Prisma. Kannst du die Deck- und Grundfläche sowie die Mantelfläche bestimmen?

    Grund- und Deckfläche haben dieselbe Form und den gleichen Flächeninhalt.

    Lösung

    Die Oberfläche eines Prismas besteht aus seiner Grund- und Deckfläche sowie seiner Mantelfläche.

    Die Grund- und die Deckfläche sind dabei kongruent. Das heißt, dass die eine Fläche die andere abdecken würde und umgekehrt, wenn du sie übereinanderlegen würdest. Sie sind also genau gleich groß. Außerdem sind sie parallel zueinander. Das heißt, dass sie in jedem Punkt den gleichen Abstand haben. Diesen Abstand bezeichnet man als Höhe $h$. Dadurch stehen die Grund- und die Deckfläche senkrecht zur Höhe.

    Das kannst du dir einmal anhand des abgebildeten Prismas mit der dreieckigen Grund- und Deckfläche klarmachen.

  • Berechne den Oberflächeninhalt des Körpers.

    Tipps

    Den Oberflächeninhalt eines Prismas berechnet man mit der Formel $O = 2 \cdot A_G + M$.

    Den Flächeninhalt eines Rechtecks berechnet man, indem man seine Länge mit der Breite multipliziert.

    Mit der Formel $A_G = \frac{a \cdot h_a}{2}$ berechnet man den Flächeninhalt von einem Dreieck, wobei $a$ die Kantenlänge und $h_a$ die Höhe, senkrecht auf der Seite $a$, angibt.

    Lösung

    Den Körper kann man in drei Prismen, nämlich zwei Quader und ein dreiecksförmiges Prisma, zerlegen. Diese Prismen werden wir nachfolgend mit $P_1$,$P_2$ und $P_3$ bezeichnen. Um den Oberflächeninhalt des Körpers zu bestimmen, muss man den Oberflächeninhalt der einzelnen Prismen bestimmen und anschließend addieren. Mit der Formel $O = 2 \cdot A_G + M$ berechnet man den Oberflächeninhalt eines Prismas. Abschließend müssen noch die nicht sichtbaren Flächen, die wir mit $F$ bezeichnen, subtrahiert werden.

    Den Oberflächeninhalt der Prismen bestimmen wir, indem wir zunächst die Grundfläche bestimmen und berechnen. Anschließend berechnen wir den Umfang der Grundfläche, da wir diesen brauchen, um die Mantelfläche des Prismas zu berechnen. Die Mantelfläche berechnen wir mit der Formel $M = u \cdot h$. Wenn wir $A_G$ und $M$ bestimmt haben, können wir den Oberflächeninhalt berechnen.

    $P_1$ Die Grundfläche des blauen Quaders $P_1$ ist ein Rechteck. Den Flächeninhalt eines Rechtecks bestimmt man, indem man seine Länge mit der Breite multipliziert.

    $\begin{aligned} A_{G_{P_1}} & = (4~cm + 8~cm + 3~cm) \cdot 2~cm\\ & = 15~cm \cdot 2~cm\\ & = 30~cm^2\\ \end{aligned}$

    Dann kann der Umfang berechnet werden:

    $\begin{aligned} u_{P_1} & = 15~cm + 2~cm + 15~cm + 2~cm\\ & = 34~cm\\ \end{aligned}$

    Nun lässt sich die Mantelfläche bestimmen.

    $\begin{aligned} M_{P_1} & = 34~cm \cdot 2~cm\\ & = 68~cm^2\\ \end{aligned}$

    Nun, da die Mantelfläche bestimmt ist, beträgt die Oberfläche:

    $\begin{aligned} O_{p_1} & = 2 \cdot 30~cm^2 + 68~cm^2\\ & = 128~cm^2\\ \end{aligned}$

    $P_2$ Die Grundfläche des grünen Quaders $P_2$ ist auch ein Rechteck.

    $\begin{aligned} A_{G_{P_2}} & = 5~cm \cdot 4~cm\\ & = 20~cm^2\\ \end{aligned}$

    Es lässt sich auch der Umfang berechnen.

    $\begin{aligned} u_{P_2} & = 5~cm + 4~cm + 5~cm + 4~cm\\ & = 18~cm\\ \end{aligned}$

    Die Mantelfläche beträgt:

    $\begin{aligned} M_{P_2} & = 18~cm \cdot 2~cm\\ & = 36~cm^2\\ \end{aligned}$

    Und dann noch die Oberfläche:

    $\begin{aligned} O_{P_2} & = 2 \cdot 20~cm^2 + 36~cm^2\\ & = 76~cm^2\\ \end{aligned}$

    $P_3$ Die Grundfläche des rosafarbenen Prismas $P_3$ ist ein Dreieck. Seinen Flächeninhalt berechnet man mit der Formel $A_G = \frac{a \cdot h_a}{2}$

    $\begin{aligned} A_{G_{P_3}} & = \frac{3~cm \cdot 5~cm}{2}\\ & = 7,5~cm^2\\ \end{aligned}$

    Der Umfang lässt sich auch berechnen:

    $\begin{aligned} u_{P_3} & = 5~cm + 3~cm + 5,8~cm\\ & = 13,8~cm\\ \end{aligned}$

    Die Mantelfläche beträgt dann:

    $\begin{aligned} M_{P_3} & = 13,8~cm \cdot 2~cm\\ & = 27,6~cm^2\\ \end{aligned}$

    Die Oberfläche des rosafarbenen Prismas $P_3$ ist:

    $\begin{aligned} O_{P_3} & = 2 \cdot 7,5~cm^2 + 27,6~cm^2\\ & = 42,6~cm^2\\ \end{aligned}$

    Da wir nun von allen Prismen den Oberflächeninhalt bestimmt haben, müssen wir die einzelnen Oberflächeninhalte addieren. Allerdings müssen wir Flächen, die wir zwar mit berechnet haben, die aber an unserem Körper nicht sichtbar sind, subtrahieren. Davon gibt es hier zwei. Einmal müssen wir eine Fläche zwischen dem grünen und dem blauen Prisma subtrahieren und einmal zwischen dem rosafarbenen und dem blauen Prisma. Wir erhalten:

    $\begin{aligned} F & = (4~cm \cdot 2~cm) + (2~cm \cdot 3~cm)\\ & = 8~cm^2 + 6~cm^2\\ & = 14~cm^2\\ \end{aligned}$

    Nun können wir den Oberflächeninhalt des Körpers berechnen. Wir erhalten

    $\begin{aligned} O & = O_{P_1} + O_{P_2} + O_{P_3} - 2 \cdot F\\ & = 128~cm^2 + 76~cm^2 + 42,6~cm^2 - 2 \cdot 14~cm^2\\ & = 218,6~cm^2\\ \end{aligned}$

    Der Oberflächeninhalt des gesamten Körpers ist $218,6~cm^2$ groß.

  • Entscheide, ob das Prisma eines Kreuzes als Dekoration verwendet werden darf.

    Tipps

    Den Oberflächeninhalt eines Prismas berechnet man mit der Formel $\large{O = 2 \cdot A_G + M}$.

    Den Flächeninhalt eines Rechtecks berechnet man, indem man seine Länge mit der Breite multipliziert.

    Es gibt verschiedene Möglichkeiten, dieses Prisma in kleinere Prismen aufzuteilen.

    Die Grund- und Deckfläche sollte aber durch das Kreuz dargestellt werden.

    Flächen, welche du berechnet hast, obwohl sie gar nicht an der Oberfläche liegen, müssen am Ende wieder abgezogen werden.

    Lösung

    Den Körper könnte man in drei Prismen mit der Form eines Quaders zerlegen. Diese Prismen werden wir nachfolgend mit $P_1$,$P_2$ und $P_3$ bezeichnen. Um den Oberflächeninhalt des Körpers zu bestimmen, muss man den Oberflächeninhalt der einzelnen Prismen bestimmen und anschließend addieren. Mit der Formel $O = 2 \cdot A_G + M$ berechnet man den Oberflächeninhalt eines Prismas. Abschließend müssen noch die nicht sichtbaren Flächen, die wir mit $F$ bezeichnen, subtrahiert werden.

    Den Oberflächeninhalt der Prismen bestimmen wir, indem wir zunächst die Grundfläche bestimmen und berechnen. Anschließend berechnen wir den Umfang der Grundfläche, da wir diesen brauchen, um die Mantelfläche des Prismas zu berechnen. Die Mantelfläche berechnen wir mit der Formel $M = u \cdot h$. Wenn wir $A_G$ und $M$ bestimmt haben, können wir den Oberflächeninhalt berechnen.

    ($P_1$) Die Grundfläche des großen Quaders in der Mitte ist ein Rechteck. Den Flächeninhalt eines Rechtecks bestimmt man, indem man seine Länge mit der Breite multipliziert.

    $\begin{aligned} A_{G_{P_1}} & = 14~cm \cdot 8~cm\\ & = 112~cm^2\\ \end{aligned}$

    $\begin{aligned} u_{P_1} & = 14~cm + 8~cm + 14~cm + 8~cm\\ & = 44~cm\\ \end{aligned}$

    $\begin{aligned} M_{P_1} & = 44~cm \cdot 15~cm\\ & = 660~cm^2\\ \end{aligned}$

    $\begin{aligned} O_{P_1} & = 2 \cdot 112~cm^2 + 660~cm^2\\ & = 884~cm^2\\ \end{aligned}$

    ($P_2$) Die Grundfläche der kleineren Quader oben und unten ist auch rechteckig. Sie sind gleich groß. Es gilt:

    $\begin{aligned} A_{G_{P_2}} & = 10~cm \cdot 2~cm\\ & = 20~cm^2\\ \end{aligned}$

    $\begin{aligned} u_{P_2} & = 10~cm + 2~cm + 10~cm + 2~cm\\ & = 24~cm\\ \end{aligned}$

    $\begin{aligned} M_{P_2} & = 24~cm \cdot 15~cm\\ & = 360~cm^2\\ \end{aligned}$

    $\begin{aligned} O_{P_2} & = 2 \cdot 20~cm^2 + 360~cm^2\\ & = 400~cm^2\\ \end{aligned}$

    Da der dritte Quader genauso groß ist wie der zweite, gilt für diesen ebenso $O_{P_2}=O_{P_3} = 400~cm^2$

    Bevor wir die Oberflächeninhalte addieren, müssen wir noch die Fläche $F$ subtrahieren, wie wir doppelt berechnet haben. Davon haben wir zwei Flächen. Es gilt:

    $\begin{aligned} F & = (10~cm \cdot 15cm ) + (10~cm \cdot 15~cm)\\ & = 150~cm^2 + 150~cm^2\\ & = 300~cm^2\\ \end{aligned}$

    Es gilt also:

    $\begin{aligned} O & = O_{P_1} + O_{P_2} + O_{P_3} - 2 \cdot F\\ & = 884~cm^2 + 400~cm^2 + 400~cm^2 - 2 \cdot 300~cm^2 = 1084~cm^2\\ \end{aligned}$

    Der Oberflächeninhalt des Körpers ist $1084~cm^2$ groß und liegt damit genau im Rahmen, um als Dekoration aufgestellt zu werden.

  • Bestimme den Oberflächeninhalt des Werkstücks.

    Tipps

    Den Oberflächeninhalt eines Prismas berechnet man mit der Formel $O = 2 \cdot A_G + M$.

    Den Flächeninhalt eines Rechtecks berechnet man, indem man seine Länge mit der Breite multipliziert.

    Mit der Formel $A_G = \frac{a + c}{2} \cdot h$ berechnet man den Flächeninhalt von einem Trapez, wobei $a$ die untere Kantenlänge, $c$ die obere Kantenlänge und $h$ die Höhe des Trapezes angibt.

    Bedenke auch, dass sich im Innern des Prismas noch Flächen befinden.

    Lösung

    Den Körper kann man in fünf Prismen, nämlich vier Quader und ein trapezförmiges Prisma, zerlegen. Diese Prismen werden wir nachfolgend mit $P_1$,$P_2$,$P_3$,$P_4$, und $P_5$ bezeichnen. Um den Oberflächeninhalt des Körpers zu bestimmen, muss man den Oberflächeninhalt der einzelnen Prismen bestimmen und anschließend addieren. Mit der Formel $O = 2 \cdot A_G + M$ berechnet man den Oberflächeninhalt eines Prismas. Abschließend müssen nicht sichtbare Flächen, die wir mit $F$ bezeichnen, subtrahiert werden. Den Oberflächeninhalt der Prismen bestimmen wir, indem wir zunächst die Grundfläche bestimmen und berechnen. Anschließend berechnen wir den Umfang der Grundfläche, da wir diesen brauchen, um die Mantelfläche des Prismas zu berechnen. Die Mantelfläche berechnen wir mit der Formel $M = u \cdot h$. Wenn wir $A_G$ und $M$ bestimmt haben, können wir den Oberflächeninhalt berechnen.

    (P1) Die Grundfläche vom Prisma $P_1$ ist ein Rechteck. Den Flächeninhalt eines Rechtecks bestimmt man, indem man seine Länge mit der Breite multipliziert.

    $\begin{aligned} A_{Gp1} & = 27~cm \cdot 7~cm\\ & = 189~cm^2\\ \end{aligned}$

    $\begin{aligned} u_{p1} & = 27~cm + 7~cm + 27~cm + 7~cm\\ & = 68~cm\\ \end{aligned}$

    $\begin{aligned} M_{p1} & = 68~cm \cdot 30~cm\\ & = 2040~cm^2\\ \end{aligned}$

    $\begin{aligned} O_{p1} & = 2 \cdot 189~cm^2 + 2040~cm^2\\ & = 2418~cm^2\\ \end{aligned}$

    (P2) Die Grundfläche der Prismen $P_2$ und $P_3$ sind auch Rechtecke. Sie sind gleich groß. Es gilt:

    $\begin{aligned} A_{Gp2} & = 9~cm \cdot 9~cm\\ & = 81~cm^2\\ \end{aligned}$

    $\begin{aligned} u_{p2} & = 4 \cdot 9~cm\\ & = 36~cm\\ \end{aligned}$

    $\begin{aligned} M_{p2} & = 36~cm \cdot 30~cm\\ & = 1080~cm^2\\ \end{aligned}$

    $\begin{aligned} O_{p2} & = 2 \cdot 81~cm^2 + 1080~cm^2\\ & = 1242~cm^2\\ \end{aligned}$

    Da der orangefarbene Quader genauso groß ist wie der gelbe, gilt für diesen ebenfalls $O_{P_3} = 1242~cm^2$

    (P4) Die Grundfläche vom Prisma $P_4$ ist auch ein Rechteck.

    $\begin{aligned} A_{Gp4} & = 5~cm \cdot 27~cm\\ & = 135~cm^2\\ \end{aligned}$

    $\begin{aligned} u_{p4} & = 27~cm + 5~cm + 27~cm + 5~cm\\ & = 64~cm\\ \end{aligned}$

    $\begin{aligned} M_{p4} & = 64~cm \cdot 30~cm\\ & = 1920~cm^2\\ \end{aligned}$

    $\begin{aligned} O_{p4} & = 2 \cdot 135~cm^2 + 1920~cm^2\\ & = 2190~cm^2\\ \end{aligned}$

    (P5) Die Grundfläche vom Prisma $P_5$ ist ein Trapez. Seinen Flächeninhalt berechnet man mit der Formel $A_G = \frac{a + c}{2} \cdot h $, wobei $a$ die untere Kantenlänge, $c$ die obere Kantenlänge und $h$ die Höhe des Trapezes angibt.

    $\begin{aligned} A_{Gp5} & = \frac{27~cm + 9~cm}{2} \cdot 10~cm\\ & = 180~cm^2\\ \end{aligned}$

    $\begin{aligned} u_{p5} & = 9~cm + 13,5~cm + 27~cm + 13,5~cm\\ & = 63~cm\\ \end{aligned}$

    $\begin{aligned} M_{p5} & = 63~cm \cdot 30~cm\\ & = 1890~cm^2\\ \end{aligned}$

    $\begin{aligned} O_{p5} & = 2 \cdot 180~cm^2 + 1890~cm^2\\ & = 2250~cm^2\\ \end{aligned}$

    Da wir nun von allen Prismen den Oberflächeninhalt bestimmt haben, müssen wir die einzelnen Oberflächeninhalte addieren. Allerdings müssen wir Flächen, die wir zwar mit berechnet haben, aber an unserem Körper nicht sichtbar sind, subtrahieren. Davon gibt es an unserem Körper fünf Flächen. Wir rechnen

    $\begin{aligned} F & = (27~cm \cdot 30~cm) + 4 \cdot (9~cm \cdot 30~cm)\\ & = 810~cm + 4 \cdot 270~cm\\ & = 810~cm + 1080~cm\\ & = 1890~cm\\ \end{aligned}$

    Nun können wir den Oberflächeninhalt des Körpers berechnen. Wir erhalten

    $\begin{aligned} O & = O_{p1} + O_{p2} + O_{p3} + O_{p4} + O_{p5} - 2 \cdot F\\ & = 2418~cm^2 + 1242~cm^2 + 1242~cm^2 + 2190cm^2 + 2250~cm^2 - 2 \cdot 1890~cm^2\\ & = 5562~cm^2\\ \end{aligned}$

    Der Oberflächeninhalt des Werkstücks beträgt $5562~cm^2$.

  • Gib an, in welche Teile die Prismen zerlegt werden können.

    Tipps

    Körper können aus unterschiedlichen Prismen zusammengesetzt werden. Schaue dir die Körper genau an. Welche Prismen kannst du in ihnen erkennen?

    An diesem Querschnitt eines Schwimmbeckens kannst du erkennen, dass es aus zwei Quadern und einem dreiecksförmigen Prisma zusammengesetzt ist.

    Lösung

    Hier siehst du noch einmal die Körper mit ihren zerlegten Prismen. Dies sind freilich nicht die einzigen Lösungen. Jeden Quader könnte man ein weiteres Mal in zwei Quader bzw. zwei dreiecksförmige Prismen zerlegen, und jedes dreiecksförmige Prisma kann man wieder in zwei dreiecksförmige Prismen zerlegen.

    Es gibt also auch noch andere Möglichkeiten, wie man die oben abgebildeten Körper in Prismen zerlegen kann. Überlege dir also zunächst gut, wie du vorgehen möchtest. Auf diese Weise kannst du dir viel Zeit und Mühe ersparen.

  • Prüfe, ob Michaels Lehrerin recht hat.

    Tipps

    Den Oberflächeninhalt eines Prismas berechnet man mit der Formel $O = 2 \cdot A_G + M$

    Mit der Formel $A_G = \frac{a \cdot h_a}{2}$ berechnet man den Flächeninhalt von einem Dreieck, wobei $a$ die Kantenlänge und $h_a$ die Höhe, senkrecht auf der Seite $a$, angibt.

    Nach dem Satz des Pythagoras gilt in einem rechtwinkligen Dreieck: Die Summe der quadrierten Katheten ergibt die quadrierte Hypotenuse. In einer Formel ausgedrückt heißt dies: $c^2 = a^2 + b^2$.

    Lösung

    Um den Oberflächeninhalt des Körpers zu berechnen, kann man ihn in drei Prismen zerlegen. Hier sind die Grundflächen der einzelnen Prismen in einem Querschnitt des Körpers dargestellt. Nachfolgend wollen wir sie mit $P_1$,$P_2$ und $P_3$ bezeichnen. Wir berechnen zunächst den Oberflächeninhalt von jedem Prisma einzeln und anschließend addieren wir sie. Den Oberflächeninhalt eines Prismas berechnet man mit der Formel $O = 2 \cdot A_G + M$.

    P$_1$ : Die Grundfläche des großen Prismas ist ein Dreieck. Seinen Flächeninhalt berechnet man mit der Formel $A_G = \frac{a \cdot h_a}{2}$

    $\begin{aligned} A_{Gp1} & = \frac{1,5~m \cdot 1~m}{2}\\ & = 0,75~m^2\\ \end{aligned}$

    Um den Umfang des Dreiecks zu berechnen, müssen wir die dritte Seite des Dreiecks $c$ berechnen. Das können wir mit dem Satz des Pythagoras tun. Nach dem Satz des Pythagoras gilt $c^2 = (1~m)^2 + (1,5~m)^2$. Formen wir diese Gleichung nach $c$ um, erhalten wir: $c = \sqrt{(1~m)^2 + (1,5~m)^2} \approx 1,8~m$. Für den Umfang folgt daraus:

    $\begin{aligned} u_{P_1} & = 1~m + 1,5~m + 1,8~m\\ & = 4,3~m\\ \end{aligned}$

    Die Mantelfläche lässt sich berechnen durch $M=u \cdot h$.

    $\begin{aligned} M_{P_1} & = 4,3~m \cdot 0,5~m\\ & = 2,15~m^2\\ \end{aligned}$

    Die Oberfläche beträgt also:

    $\begin{aligned} O_{P_1} & = 2 \cdot 0,75~m^2 + 2,15~m^2\\ & = 3,65~m^2\\ \end{aligned}$

    P$_2$ : Die Grundfläche des kleineren Prismas ist auch ein Dreieck. Für seinen Oberflächeninhalt folgt:

    $\begin{aligned} A_{G_{P_2}} & = \frac{0,7~m \cdot 0,5~m}{2}\\ & = 0,175~m^2\\ \end{aligned}$

    Um den Umfang des Dreiecks zu berechnen, müssen wir wiederum die dritte Seite des Dreiecks $c$ berechnen. Das können wir mit dem Satz des Pythagoras tun. Nach dem Satz des Pythagoras gilt: $c^2 = (0,7~m)^2 + (0,5~m)^2$. Formen wir diese Gleichung nach $c$ um, erhalten wir: $c = \sqrt{(0,7~m)^2 + (0,5~m)^2} \approx 0,86~m$. Für den Umfang folgt daraus:

    $\begin{aligned} u_{P_2} & = 0,7~m + 0,5~m + 0,86~m\\ & = 2,06~m\\ \end{aligned}$

    Daraus folgt die Fläche des Mantels:

    $\begin{aligned} M_{P_2} & = 2,06~m \cdot 0,5~m\\ & = 1,03~m^2\\ \end{aligned}$

    Es folgt die Oberfläche:

    $\begin{aligned} O_{P_2} & = 2 \cdot 0,175~m^2 + 1,03~m^2\\ & = 1,205~m^2\\ \end{aligned}$

    P$_3$ : Die Grundfläche des dritten Prismas ist ein quadratisches Rechteck. Den Flächeninhalt eines Rechtecks bestimmt man, indem man seine Länge mit der Breite multipliziert.

    $\begin{aligned} A_{G_{P_3}} & = 0,5~m \cdot 0,5~m\\ & = 0,25~m^2\\ \end{aligned}$

    Der Umfang lässt sich berechnen durch:

    $\begin{aligned} u_{P_3} & = 4 \cdot 0,5~m\\ & = 2~m\\ \end{aligned}$

    Dadurch lässt sich die Mantelfläche bestimmen.

    $\begin{aligned} M_{P_3} & = 2~m \cdot 0,5~m\\ & = 1~m^2\\ \end{aligned}$

    Die Oberfläche ist:

    $\begin{aligned} O_{P_3} & = 2 \cdot 0,25~m^2 + 1~m^2\\ & = 1,5~m^2\\ \end{aligned}$

    Da wir nun von allen Prismen den Oberflächeninhalt bestimmt haben, müssen wir die einzelnen Oberflächeninhalte addieren. Allerdings müssen wir Flächen, die wir zwar mit berechnet haben, aber an unserem Körper nicht sichtbar sind, subtrahieren. Davon gibt es an unserem Körper zwei Flächen. Wir rechnen

    $\begin{aligned} F & = (0,86~m \cdot 0,5~m) + (0,5~m \cdot 0,5~m)\\ & = 0,43~m^2 + 0,25~m^2\\ & = 0,68~m^2\\ \end{aligned}$

    Nun können wir den Oberflächeninhalt des Körpers berechnen. Wir erhalten:

    $\begin{aligned} O & = O_{p1} + O_{p2} + O_{p3} - 2 \cdot F\\ & = 3,65~m^2 + 1,205~m^2 + 1,5~cm^2 - 2 \cdot 0,68~cm^2\\ & = 4,995~m^2\\ \end{aligned}$

    Der Oberflächeninhalt ist etwas kleiner als $5~m^2$. Michael hatte also recht. Seine Lehrerin hatte sich verrechnet.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.993

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.250

Lernvideos

35.817

Übungen

32.576

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden