Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Volumen von Zylindern

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Volumen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.9 / 57 Bewertungen
Die Autor*innen
Avatar
Mathematik Digital
Volumen von Zylindern
lernst du in der Unterstufe 3. Klasse - 4. Klasse

Grundlagen zum Thema Volumen von Zylindern

Wir helfen zwei Wissenschaftlern bei der Berechnung des Volumens von zwei zylindrischen Treibstofftanks bei einem Space Shuttle. Damit das Shuttle die Erdatmosphäre verlassen kann, ist nämlich eine ganze Menge Flüssigsauerstoff und Flüssigwasserstoff notwendig. Um den Wissenschaftlern bei der Berechnung zu helfen, leiten wir uns mit Hilfe von Einheitswürfeln die Volumenformel von einem Zylinder her. Danach berechnen wir die Volumen der beiden Tanks. Abschließend kann das Shuttle dann starten. Bist du bereit?

Transkript Volumen von Zylindern

Das Volumen eines Zylinders - Definition

Hallo! Heute möchte ich mit dir zusammen die Volumenformel eines Zylinders erarbeiten und anwenden. Raketenwissenschaftler arbeiten an den ersten Entwürfen für ein Space-Shuttle. Damit das Space Shuttle die Anziehungskraft der Erde überwinden und damit in den Weltraum gelangen kann, ist eine enorme Schubkraft und damit viel Treibstoff notwendig.

Sie entwerfen dafür ein Treibstofftank, der aus drei Teilen zusammengesetzt ist: Zwei zylindrischen Tanks sollen einmal mit flüssigem Wasserstoff und einmal mit flüssigem Sauerstoff befüllt werden. Beide Teile werden durch ein elektrisches Bauteil voneinander getrennt.

Die Wissenschaftler wollen nun wissen, wieviel Liter flüssigen Sauerstoff und Wasserstoff sie in die Tanks füllen können. Wie können wir den Wissenschaftlern helfen? Wir erarbeiten uns zuerst die Formel für das Volumen eines Zylinders. Dann helfen wir den Wissenschaftlern bei der Berechnung des Volumens der Treibstofftanks. Zum Schluss fassen wir das Gelernte zusammen.

Jetzt wollen wir erstmal sehen, wie wir das Volumen bzw. den Rauminhalt eines Zylinders berechnen können. Als Hilfsmittel benutzen wir ein Kubikzentimeter große Einheitswürfel um den das Volumen eines Zylinders zu bestimmen. Einheitswürfel sind Würfel mit einer vorgegeben Längeneinheit wie zum Beispiel 1 Zentimeter als Kantenlänge. Da das Volumen dann eine Volumeneinheit, zum Beispiel Kubikzentimeter entspricht sagt, nennt man sie EINheitswürfel.

Wir müssen nur wissen, wie viele Einheitswürfel in den Zylinder passen. Damit wir abschätzen können, wie viele Einheitswürfel in den Zylinder passen, beginnen wir die Grundfläche des Zylinders mit den Einheitswürfeln zu bedecken. Jetzt legen wir eine zweite Schicht von Einheitswürfel auf die Erste. Das machen wir solange, bis der Zylinder ganz gefüllt ist. Wie groß ist jetzt das Volumen des Zylinders?

Wir müssen lediglich noch zählen, wie viele Schichten wir übereinandergelegt haben. Multiplizieren wir die Anzahl der Einheitswürfel auf in der Grundfläche mit der Anzahl der Schichten, so erhalten wir die Gesamtanzahl der Einheitswürfel im Zylinder und damit eben das Volumen. Das Verfahren ist aber nicht exakt genug, weil die Würfel das Volumen nicht ganz ausfüllen. Deswegen brauchen wir eine genaue Formel.

Die Idee mit den Einheitswürfel ist der genauen Volumenformel sehr ähnlich. Betrachten wir also einen Zylinder mit der Grundfläche Groß G und der Höhe h. Es gilt: Das Volumen des Zylinders ist gleich dem Grundflächeninhalt Groß G mal die Höhe h.

Bei einem Zylinder ist die Grundfläche ein Kreis mit Radius r. Der Flächeninhalt Groß G ist also gleich Pi mal r Quadrat. Das setzen wir in die Volumenformel ein und erhalten V Zylinder ist gleich Pi Mal r Quadrat Mal h.

Kommen wir zurück zu den Treibstofftanks für das Space-Shuttle. Die Wissenschaftler haben folgende Maße für die beiden Tanks ermittelt. Im vorderen Teil befindet sich der zylindrische Tank mit dem flüssigen Sauerstoff. Er ist 10 Meter lang. Das Volumen des ersten Tanks nennen wir V1. Im mittleren Teil befindet sich die Elektronik.

Der hintere Teil enthält einen Zylinder mit dem flüssigen Wasserstoff. Er ist 30 Meter lang. Das Volumen des zweiten Zylinders nennen wir V2. Der Durchmesser beider Zylinder beträgt 8 Meter. Die Wissenschaftler wollen nun wissen, wie viel Liter Flüssigsauerstoff und Flüssigwasserstoff in die Tanks passen.

Wir starten mit der Berechnung von V1. Der Radius des Zylinders beträgt 8 Meter Durchmesser geteilt durch zwei, also 4 Meter. Die Höhe beträgt 10 Meter. Setzen wir die Werte in die Formel ein, erhalten wir für V 1 gerundet 503 Kubikmeter.

Nun war aber die Frage nach den Litern. Ein Kubikmeter entspricht eintausend Kubikdezimetern. Ein Kubikdezimeter entspricht einem Liter. Also entspricht V1 ungefähr 503 Tausend Litern.

Jetzt berechnen wir V2. Der Radius des Zylinders beträgt wie eben 4 Meter. Die Höhe beträgt 30 Meter. Setzen wir die Werte in die Formel ein, erhalten wir für V 2 gerundet 1508 Kubikmeter. Ein Kubikmeter entsprechen eintausend Litern, also passen in V2 ungefähr eine Millionen 508 tausend Litern.

Jetzt können wir die Frage der Wissenschaftler beantworten. In den ersten Tank passen circa 503 000 Liter Flüssigsauerstoff und in dem zweiten Tank circa eine Millionen 508 tausend Liter Flüssigwasserstoff.

Heute hast du gelernt, wie man das Volumen eines Zylinders mit Hilfe von Einheitswürfeln bestimmen kann. Das Volumen eines Zylinders berechnet man mit der Formel: V Zylinder ist gleich Pi mal r Quadrat Mal h. Wir haben den Wissenschaftlern geholfen das Volumen der beiden Tanks zu berechnen. Mit dem Wissen über Zylinder können wir jetzt durchstarten.

4 Kommentare
  1. super

    Von Melanie Obach, vor fast 5 Jahren
  2. sehr cool erklärt und einfach macht weiter so ^-^

    Von Raphael G, vor mehr als 6 Jahren
  3. Super Gemacht

    Von Annette W., vor etwa 7 Jahren
  4. cool gemacht

    Von Rapmonster, vor mehr als 7 Jahren

Volumen von Zylindern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Volumen von Zylindern kannst du es wiederholen und üben.
  • Gib die Formel zur Berechnung des Volumens eines Zylinders an.

    Tipps

    Ein Zylinder ist ein spezielles Prisma. Die Grundfläche ist ein Kreis.

    Die Volumenformel für ein Prisma lautet

    $V=G\cdot h$,

    wobei $G$ der Flächeninhalt der Grundfläche ist.

    Die Formel zur Berechnung des Flächeninhaltes eines Kreises mit dem Radius $r$ lautet $A=\pi\cdot r^2$.

    Lösung

    Da ein Zylinder ein spezielles Prisma ist, kann man die Formel zur Berechnung des Volumens eines Prismas verwenden. Diese lautet

    $V=G\cdot h$.

    Dabei ist $G$ der Flächeninhalt der Grundfläche. Diese ist bei einem Zylinder ein Kreis. Man kann somit die Formel zur Berechnung des Flächeninhaltes eines Kreises mit dem Radius $r$ verwenden:

    $G=\pi\cdot r^2$.

    Wenn man diesen Flächeninhalt in die Volumenformel eines Prismas einsetzt, erhält man

    $V_{\text{Zylinder}}=\pi\cdot r^2\cdot h$.

  • Berechne das Volumen der beiden Zylinder.

    Tipps

    Verwende die Formel zur Berechnung des Volumens eines Zylinders

    $V_{\text{Zylinder}}=\pi\cdot r^2\cdot h$.

    Beachte, dass der Radius die Hälfte des Durchmessers ist.

    Du musst dann die bekannten Werte für $h$ sowie den Radius $r=4~m$ in die Formel einsetzen.

    Ein $dm^3$ entspricht einem Liter.

    Es gilt $1~m^3=1000~dm^3$.

    Lösung

    Sowohl der obere als auch der untere Tank sind Zylinder. Um das Fassungsvermögen dieser Tanks zu berechnen, muss man die Volumenformel für Zylinder verwenden. Diese lautet

    $V_{\text{Zylinder}}=\pi\cdot r^2\cdot h$.

    Der obere Tank hat einen Durchmesser von $d=8~m$ und somit einen Radius von $r=4~m$ sowie eine Höhe von $h=10~m$. Diese beiden Größen können in die Volumenformel eingesetzt werden und man erhält

    $V=\pi\cdot (4~m)^2\cdot 10~m=160\pi~m^3\approx 503~m^3$.

    Nun kann man verwenden, dass $1~m^3=1000~dm^3\hat =1000~L$ gilt. Damit erhält man

    $V\approx 503000~L$.

    Ebenso kann das Fassungsvermögen des unteren Tanks berechnet werden. Der untere Tank hat ebenfalls einen Durchmesser von $d=8~m$. Also ist $r=4~m$. Dieser Tank ist $h=30~m$ hoch. Einsetzen dieser Größen in die Volumenformel führt zu

    $V=\pi\cdot (4~m)^2\cdot 30~m=480\pi~m^3\approx 1508~m^3$.

    Dies kann noch in Liter umgerechnet werden: $V\approx 1508000~L$.

  • Bestimme das Volumen der Zylinder.

    Tipps

    Beachte, dass $r$ quadriert wird.

    Setze die gegebenen Werte in die Formel ein.

    Hier siehst du eine Beispielrechnung für $r=3~m$ und $h=3~m$:

    $V=\pi\cdot (3~m)^2\cdot 3~m=27\pi~m^3\approx 84,8~m^3$

    Lösung

    Wenn man das Volumen eines Zylinders berechnen möchte, benötigt man die Volumenformel $V_{\text{Zylinder}}=\pi\cdot r^2\cdot h$.

    Schauen wir uns die Volumina an:

    • $r=3~m$ und $h=12~m$ führt zu $V=\pi\cdot (3~m)^2\cdot 12~m=108\pi~m^3\approx 339,3~m^3$.
    • $r=6~m$ und $h=6~m$ führt zu $V=\pi\cdot (6~m)^2\cdot 6~m=216\pi~m^3\approx 678,6~m^3$.
    • $r=12~m$ und $h=3~m$ führt zu $V=\pi\cdot (12~m)^2\cdot 3~m=432\pi~m^3\approx 1357,2~m^3$.
    • $r=9~m$ und $h=6~m$ führt zu $V=\pi\cdot (9~m)^2\cdot 6~m=486\pi~m^3\approx 1526,8~m^3$.
  • Ermittle das Fassungsvermögen der Getränkedose in Litern.

    Tipps

    Die Volumenformel lautet

    $V_{\text{Zylinder}}=\pi\cdot r^2\cdot h$.

    Ein Kubikdezimeter entspricht einem Liter.

    Es gilt $1000~cm^3=1~dm^3$ oder

    $1~cm^3=0,001~dm^3$.

    Lösung

    Um den Inhalt der neuen Glasbachtal'schen Getränkedose zu berechnen, muss zunächst der Durchmesser der Dose halbiert werden. So erhält man den Radius $r=3~cm$.

    Nun können dieser Radius sowie die Höhe $h=15~cm$ in die Volumenformel eingesetzt werden und man kommt somit zu

    $\begin{align} V & =\pi\cdot (3~cm)^2\cdot 15~cm=135\pi~cm^3\\ & \approx 424~cm^3 \end{align}$ .

    Da $1000~cm^3=1~dm^3$ ist, muss dieser Wert durch $1000$ dividiert werden, um das Fassungsvermögen in Litern zu erhalten:

    $V=0,424~L=424~mL$ .

  • Beschreibe, wie man $m^3$ in Liter umrechnen kann.

    Tipps

    Hast du eine Packung (Hafer-, Soja-, Reis-)Milch zuhause?

    Darin befindet sich sehr wahrscheinlich ein Liter Milch.

    Stelle dir einen Würfel mit der Seitenlänge $1~m$ vor. Da passen doch sicher mehr als $10$ Milchpackungen hinein ($10~L$), oder?

    Es sind drei Aussagen richtig.

    Lösung

    Mit dem Volumen misst du den Inhalt eines Raumes. Es gibt an, wie viel Flüssigkeit oder auch Füllgut (wie Mehl oder Zucker) in einen Raum passt.

    Wenn man sich einen Zylinder nach oben offen vorstellt, kann man sich fragen, wie viel $m^3$, $L$ oder $dm^3$ hinein passen. Wichtig ist es, sich zu merken, dass $1~dm^3$ einem Liter entspricht.

    Man muss also noch $m^3$ in $dm^3$ umrechnen. Wie geht das? Es gilt $1~m=10~dm$. Damit gilt auch $1~m^3=(10~dm)^3=10^3~dm^3=1000~dm^3$.

    Damit ist klar, dass $1~m^3$ gerade $1000~L$ entspricht.

  • Leite den Radius und die Höhe des Zylinders in Zentimeter her.

    Tipps

    Beachte, dass $1,5~L~\hat=~1500~cm^3$.

    Löse die Gleichung (ohne Maßeinheiten)

    $1500=\pi\cdot r^2\cdot h$.

    Verwende $h=2r$.

    Somit erhältst du

    $1500=\pi\cdot r^2\cdot 2r=2\pi\cdot r^3$.

    Lösung

    Da das Volumen $1,5~L~\hat=~1500~cm^3$ bekannt ist, ist die folgende Gleichung zu lösen. Dabei wird auf die Maßeinheiten verzichtet:

    $1500=\pi\cdot r^2\cdot h$.

    Befinden sich in dieser Gleichung zwei Unbekannte? Nein. Denn es gilt ja $h=2r$. Dies kann in die Gleichung eingesetzt werden:

    $1500=\pi\cdot r^2\cdot 2r=2\pi\cdot r^3$.

    Nun kann die Gleichung gelöst werden:

    $\begin{array}{rclll} 1500&=&2\pi\cdot r^3&|&:(2\pi)\\ \frac{750}{\pi}&=&r^3&|&\sqrt[3]{~~~}\\ \sqrt[3]{\frac{750}{\pi}}&=&r\\ 6,2&\approx&r \end{array}$.

    Mit diesem Radius kann dann auch die Höhe berechnet werden: $h=2r=2\cdot 6,2=12,4$.

    Die Flasche muss also einen Radius von rund $6,2~cm$ und eine Höhe von rund $12,4~cm$ haben, um ebenfalls $1,5~L$ fassen zu können.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.883

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.385

Lernvideos

36.052

Übungen

32.600

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Schulstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden